
A body is projected horizontally from a point above the ground and motion of the body is described by the equation $x = 2t$, $y = 5{t^2}$ where $x$, and $y$ are horizontal and vertical coordinates in meter after time $t$. The initial velocity of the body will be
A) $\sqrt {29} m/s$ horizontal
B) $5m/s$ horizontal
C) $2m/s$ vertical
D) $2m/s$ horizontal
Answer
232.8k+ views
Hint: Here we are given with a projected body and asked with the initial velocity of it. The coordinates of movement in both $x$ and $y$ coordinates are given. So it is worth thinking that initially when the projectile body starts moving it moves in the horizontal direction. So, the velocity would also be horizontal. Now, use the concept of differentiation in order to get the magnitude of velocity and your question will be solved.
Complete step by step solution:
Here it is given in the question that the body is projected horizontally from a point. So, the initial motion the body would be in the horizontal direction.
So, here the horizontal velocity would be given as the initial velocity that is asked in the question.
For calculating the velocity at a given point we have to differentiate distance with time.
So, here taking the horizontal coordinates that is the $x$ - coordinates we have, $2m{s^{ - 1}}$
${v_i} = \dfrac{{dx}}{{dt}}$
Putting $x = 2t$ we have,
${v_i} = \dfrac{{d(2t)}}{{dt}}$
On simplifying we have,
${v_i} = 2\dfrac{{dt}}{{dt}}$
As we know that, $\dfrac{{dt}}{{dt}} = 1$
So we have, ${v_i} = 2m{s^{ - 1}}$
So, the initial velocity is $2m{s^{ - 1}}$.
This initial velocity is in horizontal direction so the correct option here is option D that is $2m{s^{ - 1}}$ horizontal.
Note: It is important to note that the horizontal velocity of a projectile remains constant throughout the journey, this can also be proved by the fact that the differentiated value we got for the velocity is a constant, there is no variable in it. So it would not change with time and will remain constant throughout the journey. The value will remain $2m{s^{ - 1}}$ for the horizontal velocity throughout the journey.
Complete step by step solution:
Here it is given in the question that the body is projected horizontally from a point. So, the initial motion the body would be in the horizontal direction.
So, here the horizontal velocity would be given as the initial velocity that is asked in the question.
For calculating the velocity at a given point we have to differentiate distance with time.
So, here taking the horizontal coordinates that is the $x$ - coordinates we have, $2m{s^{ - 1}}$
${v_i} = \dfrac{{dx}}{{dt}}$
Putting $x = 2t$ we have,
${v_i} = \dfrac{{d(2t)}}{{dt}}$
On simplifying we have,
${v_i} = 2\dfrac{{dt}}{{dt}}$
As we know that, $\dfrac{{dt}}{{dt}} = 1$
So we have, ${v_i} = 2m{s^{ - 1}}$
So, the initial velocity is $2m{s^{ - 1}}$.
This initial velocity is in horizontal direction so the correct option here is option D that is $2m{s^{ - 1}}$ horizontal.
Note: It is important to note that the horizontal velocity of a projectile remains constant throughout the journey, this can also be proved by the fact that the differentiated value we got for the velocity is a constant, there is no variable in it. So it would not change with time and will remain constant throughout the journey. The value will remain $2m{s^{ - 1}}$ for the horizontal velocity throughout the journey.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

