
A body oscillates with SHM according to the equation (in S.I. unit) $x = \cos [2\pi t + \dfrac{\pi }{4}]$. At $t = 1.5\sec $, calculate the
(1) Displacement
(2) Speed and
(3) Acceleration of the body
Answer
232.8k+ views
Hint: Simple harmonic motion is a special type of periodic motion. In this type of motion the acceleration of the particle is directly proportional to the displacement of the body from its mean position. The force is always directed towards the mean position. It is a special case of oscillatory motion.
Complete step by step solution:
1. Displacement is defined as the change in the position of the object.
Given $x = \cos [2\pi t + \dfrac{\pi }{4}]$---(i)
At $t = 1.5\sec $
Substituting the value of time in the equation (i),
$\Rightarrow {x_{t = 1.5}} = \cos [2\pi \times 1.5 + \dfrac{\pi }{4}]$
$\Rightarrow {x_{t = 1.5}} = \cos [3\pi + \dfrac{\pi }{4}]$
$\Rightarrow {x_{t = 1.5}} = \cos [\dfrac{{7\pi + \pi }}{4}]$
$\Rightarrow {x_{t = 1.5}} = \cos \dfrac{{8\pi }}{4}$
$\Rightarrow {x_{t = 1.5}} = \cos [2\pi ]$
$\cos n\pi = 1$ if n is an even number.
$\therefore $ ${x_{t = 1.5}} = 1m$
Displacement of the particle is $x = 1m$
2. Speed is the rate of change of displacement with time. It can be writ
$ \Rightarrow v = \dfrac{{dx}}{{dt}}$
$\Rightarrow v = \dfrac{d}{{dt}}[\cos (2\pi t + \dfrac{\pi }{4})]$
$\Rightarrow v = - \sin (2\pi t + \dfrac{\pi }{4}).2\pi $---(ii)
At $t = 1.5\sec $
Substituting the value of time in equation (ii)
$\Rightarrow {v_{t = 1.5}} = - 2\pi \sin (2\pi \times 1.5 + \dfrac{\pi }{4})$
$\Rightarrow {v_{t = 1.5}} = - 2\pi \sin (3\pi + \dfrac{\pi }{4})$
$\Rightarrow {v_{t = 1.5}} = - 2\pi \sin (2\pi )$
$\sin n\pi = 0$ if n is an even number
$\therefore {v_{t = 1.5}} = 0$
The speed of the particle is $v = 0$.
3. Acceleration is the rate of change of velocity with respect to time. It can be written by using the formula
$a = \dfrac{{dv}}{{dt}}$
$\Rightarrow a = \dfrac{d}{{dt}}[ - 2\pi \sin (2\pi t + \dfrac{\pi }{4})]$
$\Rightarrow a = - 2\pi \cos (2\pi t + \dfrac{\pi }{4}) \times 2\pi $---(iii)
At $t = 1.5\sec $
Substituting the value of time in equation (iii)
$\Rightarrow a = - 2\pi \cos (2\pi \times 1.5 + \dfrac{\pi }{4}) \times 2\pi $
$\Rightarrow a = - 4{\pi ^2}\cos (3\pi + \dfrac{\pi }{4})$
$\Rightarrow a = - 4{\pi ^2}\cos (2\pi )$
$\cos n\pi = 1$if n is an even integer
$\therefore a = - 4{\pi ^2}$
The acceleration of the particle is $a = - 4{\pi ^2}$.
Note: It is to be noted that though simple harmonic motion is a special case of oscillatory motion, they are different. Oscillatory motion is the to and fro motion of the particle from its mean position. An object can be in oscillatory motion forever in the absence of friction. But simple harmonic motion is a type of oscillatory motion in which the particle moves along a straight line such that magnitude is proportional to the distance.
Complete step by step solution:
1. Displacement is defined as the change in the position of the object.
Given $x = \cos [2\pi t + \dfrac{\pi }{4}]$---(i)
At $t = 1.5\sec $
Substituting the value of time in the equation (i),
$\Rightarrow {x_{t = 1.5}} = \cos [2\pi \times 1.5 + \dfrac{\pi }{4}]$
$\Rightarrow {x_{t = 1.5}} = \cos [3\pi + \dfrac{\pi }{4}]$
$\Rightarrow {x_{t = 1.5}} = \cos [\dfrac{{7\pi + \pi }}{4}]$
$\Rightarrow {x_{t = 1.5}} = \cos \dfrac{{8\pi }}{4}$
$\Rightarrow {x_{t = 1.5}} = \cos [2\pi ]$
$\cos n\pi = 1$ if n is an even number.
$\therefore $ ${x_{t = 1.5}} = 1m$
Displacement of the particle is $x = 1m$
2. Speed is the rate of change of displacement with time. It can be writ
$ \Rightarrow v = \dfrac{{dx}}{{dt}}$
$\Rightarrow v = \dfrac{d}{{dt}}[\cos (2\pi t + \dfrac{\pi }{4})]$
$\Rightarrow v = - \sin (2\pi t + \dfrac{\pi }{4}).2\pi $---(ii)
At $t = 1.5\sec $
Substituting the value of time in equation (ii)
$\Rightarrow {v_{t = 1.5}} = - 2\pi \sin (2\pi \times 1.5 + \dfrac{\pi }{4})$
$\Rightarrow {v_{t = 1.5}} = - 2\pi \sin (3\pi + \dfrac{\pi }{4})$
$\Rightarrow {v_{t = 1.5}} = - 2\pi \sin (2\pi )$
$\sin n\pi = 0$ if n is an even number
$\therefore {v_{t = 1.5}} = 0$
The speed of the particle is $v = 0$.
3. Acceleration is the rate of change of velocity with respect to time. It can be written by using the formula
$a = \dfrac{{dv}}{{dt}}$
$\Rightarrow a = \dfrac{d}{{dt}}[ - 2\pi \sin (2\pi t + \dfrac{\pi }{4})]$
$\Rightarrow a = - 2\pi \cos (2\pi t + \dfrac{\pi }{4}) \times 2\pi $---(iii)
At $t = 1.5\sec $
Substituting the value of time in equation (iii)
$\Rightarrow a = - 2\pi \cos (2\pi \times 1.5 + \dfrac{\pi }{4}) \times 2\pi $
$\Rightarrow a = - 4{\pi ^2}\cos (3\pi + \dfrac{\pi }{4})$
$\Rightarrow a = - 4{\pi ^2}\cos (2\pi )$
$\cos n\pi = 1$if n is an even integer
$\therefore a = - 4{\pi ^2}$
The acceleration of the particle is $a = - 4{\pi ^2}$.
Note: It is to be noted that though simple harmonic motion is a special case of oscillatory motion, they are different. Oscillatory motion is the to and fro motion of the particle from its mean position. An object can be in oscillatory motion forever in the absence of friction. But simple harmonic motion is a type of oscillatory motion in which the particle moves along a straight line such that magnitude is proportional to the distance.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

