Answer
Verified
111.6k+ views
Hint Use the formula of the acceleration and calculate it for both the frictionless condition and the frictional condition. Find the relation between the acceleration and the time taken and substitute the known values in it, to find the coefficient of the friction.
Useful formula
The formula for the acceleration of the body is
${a_{}} = g\left( {\sin {\theta ^ \circ } - {\mu _k}\cos {\theta ^ \circ }} \right)$
Where is the acceleration of the body, $g$ is the acceleration due to gravity , ${\mu _k}$ is the coefficient of the friction and $\theta $ is the angle of the surface with the horizontal.
Complete step by step solution
It is given that the
Time taken to slide the plane, ${t_2} = 2{t_1}$
The angle that the plane forms with the horizontal, $\theta = {30^ \circ }$
It is known that when there is no friction between the surfaces of sliding, then the acceleration of the block is equal to $g\sin \theta $ .
${a_1} = g\sin {30^ \circ }$
By simplifying the above equation, we get
${a_1} = \dfrac{g}{2}$
In the presence of the frictional force, the acceleration of the block is calculated as follows.
${a_2} = g\left( {\sin {{30}^ \circ } - {\mu _k}\cos {{30}^ \circ }} \right)$
By further simplification,
${a_2} = \dfrac{g}{2}\left( {1 - \sqrt 3 {\mu _k}} \right)$
It is known that the square of time is inversely proportional to that of the acceleration,
$\dfrac{{t_2^2}}{{t_1^2}} = \dfrac{{{a_1}}}{{{a_2}}}$
Substituting that ${t_2} = 2{t_1}$ and the value of the acceleration in the above equation,
$\dfrac{{4t_1^2}}{{t_1^2}} = \dfrac{1}{{\left( {1 - \sqrt 3 {\mu _k}} \right)}}$
By simplifying the above equation,
${\mu _k} = \dfrac{{\sqrt 3 }}{4}$
Hence the coefficient of the friction is obtained as $\dfrac{{\sqrt 3 }}{4}$ .
Note Remember that the friction helps the plane to stand at a particular place by making it ${30^ \circ }$ inclined with the horizontal. In the frictionless condition, it falls down soon. The relation between the time and the acceleration is calculated from the formula ${\text{acceleration}} = \dfrac{{{\text{distance}}}}{{{\text{tim}}{{\text{e}}^2}}}$.
Useful formula
The formula for the acceleration of the body is
${a_{}} = g\left( {\sin {\theta ^ \circ } - {\mu _k}\cos {\theta ^ \circ }} \right)$
Where is the acceleration of the body, $g$ is the acceleration due to gravity , ${\mu _k}$ is the coefficient of the friction and $\theta $ is the angle of the surface with the horizontal.
Complete step by step solution
It is given that the
Time taken to slide the plane, ${t_2} = 2{t_1}$
The angle that the plane forms with the horizontal, $\theta = {30^ \circ }$
It is known that when there is no friction between the surfaces of sliding, then the acceleration of the block is equal to $g\sin \theta $ .
${a_1} = g\sin {30^ \circ }$
By simplifying the above equation, we get
${a_1} = \dfrac{g}{2}$
In the presence of the frictional force, the acceleration of the block is calculated as follows.
${a_2} = g\left( {\sin {{30}^ \circ } - {\mu _k}\cos {{30}^ \circ }} \right)$
By further simplification,
${a_2} = \dfrac{g}{2}\left( {1 - \sqrt 3 {\mu _k}} \right)$
It is known that the square of time is inversely proportional to that of the acceleration,
$\dfrac{{t_2^2}}{{t_1^2}} = \dfrac{{{a_1}}}{{{a_2}}}$
Substituting that ${t_2} = 2{t_1}$ and the value of the acceleration in the above equation,
$\dfrac{{4t_1^2}}{{t_1^2}} = \dfrac{1}{{\left( {1 - \sqrt 3 {\mu _k}} \right)}}$
By simplifying the above equation,
${\mu _k} = \dfrac{{\sqrt 3 }}{4}$
Hence the coefficient of the friction is obtained as $\dfrac{{\sqrt 3 }}{4}$ .
Note Remember that the friction helps the plane to stand at a particular place by making it ${30^ \circ }$ inclined with the horizontal. In the frictionless condition, it falls down soon. The relation between the time and the acceleration is calculated from the formula ${\text{acceleration}} = \dfrac{{{\text{distance}}}}{{{\text{tim}}{{\text{e}}^2}}}$.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Class 11 JEE Main Physics Mock Test 2025
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 5 Work Energy and Power
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line