
A body travels \[200cm\] in the first \[2sec\] and \[220cm\] in the next \[4sec\] with deceleration. The velocity of the body at the end of the \[{7^{th}}sec\] is:
A) \[20cm/s\]
B) \[15cm/s\]
C) \[10cm/s\]
D) \[0cm/s\]
Answer
232.8k+ views
Hint: Above problem is related to the motion of the body in a rectilinear way. So, we can easily apply the equations of motion to solve this problem.
The motion of the body in which the body travels along a straight line is called rectilinear motion. This motion is an example of translatory motion.
Formula used: To solve rectilinear problems, we use equations of motion.
There are three equations of motion by which we can find initial velocity$\left( u \right)$, final the velocity$\left( v \right)$, acceleration$\left( a \right)$, displacement$\left( s \right)$ and time taken$\left( t \right)$ by the bodies in their travelling path. The equations of motion are following-
i)$v = u + at$
ii) $s = ut + \dfrac{1}{2}a{t^2}$
iii) ${v^2} = {u^2} + 2as$
Complete step by step solution:
In the given question, we have a body, which travels \[200cm\] in first \[2sec\]. So, for finding initial velocity, we can apply the second equation of motion because we know the displacement and time. By the second equation of motion-
$s = ut + \dfrac{1}{2}a{t^2}$
Substituting $s = 200cm$, $t = 2\sec $, we get-
$
200 = u \times 2 + \dfrac{1}{2}a{(2)^2} \\
\Rightarrow 200 = 2u + 2a \\
$
Or we can write-
$u + a = 100$ (i)
Now, in the next $4\sec $ body displaced $220cm$ more. So, the total displacement of the body will be $420cm(200cm + 220cm)$ and the total time taken $6\sec (2\sec + 4\sec )$. So, again by second equation of motion-
$s = ut + \dfrac{1}{2}a{t^2}$
Substituting $s = 420cm$, $t = 6\sec $, we get-
$
420 = u \times 6 + \dfrac{1}{2}a{(6)^2} \\
\Rightarrow 420 = 6u + 18a \\
$
Or we can write-
$u + 3a = 70$ (ii)
On simplifying equation (i) and equation (ii), we get-
$a = - 15cm/{\sec ^2}$
Putting the value in $a$ in equation (i)
$
u - 15 = 100 \\
\Rightarrow u = 100 + 15 \\
\Rightarrow u = 115cm/s \\
$
In the new case, question is asking for velocity at the end of the \[{7^{th}}sec\]-
Now, using first equation of motion-
$v = u + at$
Substituting $u = 115cm/s$, $a = - 15cm/{\sec ^2}$and $t = 7\sec $, we get-
$
v = 115 + \left( { - 15} \right) \times 7 \\
\Rightarrow v = 115 - 105 \\
\therefore v = 10cm/s \\
$
Hence, the velocity of the body at the end of \[{7^{th}}sec\] is $10cm/s$.
Therefore, option (C) is correct.
Note: We have to remember all equations of motion to solve this question. Here, we use the second equation of motion. If there is a change in the acceleration then we can use the third equation of motion. One thing is to be remembered then when the velocity is increasing then there is acceleration and if velocity is decreasing then there is deceleration or retardation.
The motion of the body in which the body travels along a straight line is called rectilinear motion. This motion is an example of translatory motion.
Formula used: To solve rectilinear problems, we use equations of motion.
There are three equations of motion by which we can find initial velocity$\left( u \right)$, final the velocity$\left( v \right)$, acceleration$\left( a \right)$, displacement$\left( s \right)$ and time taken$\left( t \right)$ by the bodies in their travelling path. The equations of motion are following-
i)$v = u + at$
ii) $s = ut + \dfrac{1}{2}a{t^2}$
iii) ${v^2} = {u^2} + 2as$
Complete step by step solution:
In the given question, we have a body, which travels \[200cm\] in first \[2sec\]. So, for finding initial velocity, we can apply the second equation of motion because we know the displacement and time. By the second equation of motion-
$s = ut + \dfrac{1}{2}a{t^2}$
Substituting $s = 200cm$, $t = 2\sec $, we get-
$
200 = u \times 2 + \dfrac{1}{2}a{(2)^2} \\
\Rightarrow 200 = 2u + 2a \\
$
Or we can write-
$u + a = 100$ (i)
Now, in the next $4\sec $ body displaced $220cm$ more. So, the total displacement of the body will be $420cm(200cm + 220cm)$ and the total time taken $6\sec (2\sec + 4\sec )$. So, again by second equation of motion-
$s = ut + \dfrac{1}{2}a{t^2}$
Substituting $s = 420cm$, $t = 6\sec $, we get-
$
420 = u \times 6 + \dfrac{1}{2}a{(6)^2} \\
\Rightarrow 420 = 6u + 18a \\
$
Or we can write-
$u + 3a = 70$ (ii)
On simplifying equation (i) and equation (ii), we get-
$a = - 15cm/{\sec ^2}$
Putting the value in $a$ in equation (i)
$
u - 15 = 100 \\
\Rightarrow u = 100 + 15 \\
\Rightarrow u = 115cm/s \\
$
In the new case, question is asking for velocity at the end of the \[{7^{th}}sec\]-
Now, using first equation of motion-
$v = u + at$
Substituting $u = 115cm/s$, $a = - 15cm/{\sec ^2}$and $t = 7\sec $, we get-
$
v = 115 + \left( { - 15} \right) \times 7 \\
\Rightarrow v = 115 - 105 \\
\therefore v = 10cm/s \\
$
Hence, the velocity of the body at the end of \[{7^{th}}sec\] is $10cm/s$.
Therefore, option (C) is correct.
Note: We have to remember all equations of motion to solve this question. Here, we use the second equation of motion. If there is a change in the acceleration then we can use the third equation of motion. One thing is to be remembered then when the velocity is increasing then there is acceleration and if velocity is decreasing then there is deceleration or retardation.
Recently Updated Pages
Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Circuit Switching vs Packet Switching: Key Differences Explained

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

