A bomb at rest explodes into 3 parts of the same mass. The momentum of two parts is $ - 3P\widehat i$ and $2P\widehat j$ respectively. The magnitude of the momentum of the third part is.
A) P
B) $\sqrt 5 P$
C) $\sqrt {11} P$
D) $\sqrt {13} P$
Answer
Verified
116.4k+ views
Hint: Since, the bomb was initially at rest state, hence after it explodes, the net momentum of it’s centre of mass should be zero, because the rest bomb had momentum zero before it exploded. So, we just have to conserve linear momentum of the bomb to find the momentum of the third particle.
Complete step by step answer:
Question states that bomb explodes into three parts of same mass, so all particles should have mass
${m_1} + {m_2} + {m_3} = \dfrac{m}{3}$,
Now initial momentum of bomb ($\overrightarrow {{P_{initial}}} $)$ = 0$,
Momentum of first particle $\left( {\overrightarrow {{P_1}} } \right)$$ = - 3P\widehat i$
Momentum of second particle $\left( {\overrightarrow {{P_2}} } \right)$$ = 2P\widehat j,$
Let momentum of third particle be $\overrightarrow {{P_3}} $
Using law of conservation of momentum,
$\overrightarrow {{P_{initial}}} = \overrightarrow {{P_{final}}} $
So, we get,
\[\overrightarrow {{P_{initial}}} = \overrightarrow {{P_1}} + \overrightarrow {{P_2}} + \overrightarrow {{P_3}} \]
Initial momentum is 0
\[\overrightarrow {{P_1}} + \overrightarrow {{P_2}} + \overrightarrow {{P_3}} = 0\]
Putting all values, we get,
$
- 3P\widehat i + 2P\widehat j + \overrightarrow {{P_3}} = 0 \\
\overrightarrow {{P_3}} = 3P\widehat i - 2P\widehat j \\
$
Now, we want to find its magnitude, so,
$
\overrightarrow {{P_3}} = \sqrt {{{\left( {3P} \right)}^2} + {{\left( { - 2P} \right)}^2}} \\
\overrightarrow {{P_3}} = \sqrt {13{P^2}} \\
\overrightarrow {{P_3}} = \sqrt {13} P \\
$
Hence magnitude of momentum of third particle will be $\sqrt {13} P$
So our answer is option (D)
Note: We were able to apply the law of conservation of linear momentum in the bomb because there was no external force acting on the bomb before it exploded. Now, the initial linear momentum of the bomb was 0 because rest objects always have linear momentum 0 because their velocity is 0.
Complete step by step answer:
Question states that bomb explodes into three parts of same mass, so all particles should have mass
${m_1} + {m_2} + {m_3} = \dfrac{m}{3}$,
Now initial momentum of bomb ($\overrightarrow {{P_{initial}}} $)$ = 0$,
Momentum of first particle $\left( {\overrightarrow {{P_1}} } \right)$$ = - 3P\widehat i$
Momentum of second particle $\left( {\overrightarrow {{P_2}} } \right)$$ = 2P\widehat j,$
Let momentum of third particle be $\overrightarrow {{P_3}} $
Using law of conservation of momentum,
$\overrightarrow {{P_{initial}}} = \overrightarrow {{P_{final}}} $
So, we get,
\[\overrightarrow {{P_{initial}}} = \overrightarrow {{P_1}} + \overrightarrow {{P_2}} + \overrightarrow {{P_3}} \]
Initial momentum is 0
\[\overrightarrow {{P_1}} + \overrightarrow {{P_2}} + \overrightarrow {{P_3}} = 0\]
Putting all values, we get,
$
- 3P\widehat i + 2P\widehat j + \overrightarrow {{P_3}} = 0 \\
\overrightarrow {{P_3}} = 3P\widehat i - 2P\widehat j \\
$
Now, we want to find its magnitude, so,
$
\overrightarrow {{P_3}} = \sqrt {{{\left( {3P} \right)}^2} + {{\left( { - 2P} \right)}^2}} \\
\overrightarrow {{P_3}} = \sqrt {13{P^2}} \\
\overrightarrow {{P_3}} = \sqrt {13} P \\
$
Hence magnitude of momentum of third particle will be $\sqrt {13} P$
So our answer is option (D)
Note: We were able to apply the law of conservation of linear momentum in the bomb because there was no external force acting on the bomb before it exploded. Now, the initial linear momentum of the bomb was 0 because rest objects always have linear momentum 0 because their velocity is 0.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
Charging and Discharging of Capacitor
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Which of the following is the smallest unit of length class 11 physics JEE_Main
JEE Main 2025 Maths Online - FREE Mock Test Series
JEE Main 2024 Physics Question Paper with Solutions 27 January Shift 1
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids
Thermodynamics Class 11 Notes CBSE Physics Chapter 11 (Free PDF Download)
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane
Ideal and Non-Ideal Solutions Raoult's Law - JEE