A box contains $b$ blue balls and $r$ red balls. A ball is drawn randomly from the box and is returned to the box with another ball of the same color. The probability that the second ball is drawn from the box is blue is
A.$\dfrac{b}{{r + b}}$
B.$\dfrac{{{b^2}}}{{{{\left( {r + b} \right)}^2}}}$
C.$\dfrac{{b + 1}}{{r + b + 1}}$
D.$\dfrac{{b\left( {b + 1} \right)}}{{\left( {r + b} \right)\left( {r + b + 1} \right)}}$
Answer
Verified
116.4k+ views
Hint: First find the probability that the second ball is blue when the first ball drawn from the box is also blue and the probability that the second ball is blue when the first drawn ball is red, then find the probability that the second ball is drawn from the box is blue by adding both the probabilities.
Complete step-by-step answer:
It is given that the box contains $b$ blue balls and $r$ red balls. Then the total balls in the box are$\left( {b + r} \right)$.
There is given a condition that a ball is drawn randomly from the box and is returned to the box with another ball of the same color.
Now, assume that if the first drawn ball is blue, then the probability that the first drawn ball is blue is given as:
$P\left( B \right) = \dfrac{b}{{b + r}}$
According to the given condition the total number of blue balls in the box, after returning with another blue ball, is $\left( {b + 1} \right)$ and the number of red balls remains the same.
Then the probability that the second ball is blue$\left( {{P_{{b_1}}}} \right)$:
${P_{{b_1}}} = \dfrac{b}{{b + r}} \times \dfrac{{b + 1}}{{r + b + 1}}$ …(1)
Now, assume that if the first drawn ball is red, then the probability that the first drawn ball is red is given as:
$P\left( B \right) = \dfrac{r}{{b + r}}$
According to the given condition the total number of red balls in the box, after returning with another red ball, is $r + 1$, and the number of blue balls remains same.
Then the probability that the second ball is blue$\left( {{P_{{b_2}}}} \right)$
${P_{{b_2}}} = \dfrac{r}{{b + r}} \times \dfrac{b}{{r + b + 1}}$ …(2)
Therefore, the probability that the second drawn ball is blue is the sum of both the probability that if the first drawn ball is red$\left( {{P_{{b_1}}}} \right)$ and the first drawn ball is blue$\left( {{P_{{b_2}}}} \right)$.
$ \Rightarrow P = {P_{{b_1}}} + {P_{{b_2}}}$
Substitute $\dfrac{b}{{b + r}} \times \dfrac{{b + 1}}{{r + b + 1}}$ as the value of ${P_{{b_1}}}$ and $\dfrac{r}{{b + r}} \times \dfrac{b}{{r + b + 1}}$ as the value of${P_{{b_2}}}$ :
$ \Rightarrow P = \dfrac{b}{{b + r}} \times \dfrac{{b + 1}}{{r + b + 1}} + \dfrac{r}{{b + r}} \times \dfrac{b}{{r + b + 1}}$
Simplify the above expression:
$ \Rightarrow P = \dfrac{{b\left( {b + 1} \right) + rb}}{{\left( {b + r} \right)\left( {r + b + 1} \right)}}$
$ \Rightarrow P = \dfrac{{b\left( {r + b + 1} \right)}}{{\left( {b + r} \right)\left( {r + b + 1} \right)}}$
$ \Rightarrow P = \dfrac{b}{{\left( {b + r} \right)}}$
Therefore, the probability that the second ball is drawn from the box is blue is$\dfrac{b}{{\left( {b + r} \right)}}$.
Therefore the option A is correct.
[Note: There are $\left( {b + r} \right)$ balls in the box. The probability that the first drawn ball is red is given as:
$P\left( R \right) = \dfrac{{{\text{Number of red ball}}}}{{{\text{Total number of ball}}}} = \dfrac{r}{{r + b}}$
Similarly, the probability that the first drawn ball is blue is given as:
$P\left( B \right) = \dfrac{{{\text{Number of blue ball}}}}{{{\text{Total number of ball}}}} = \dfrac{b}{{r + b}}$]
Complete step-by-step answer:
It is given that the box contains $b$ blue balls and $r$ red balls. Then the total balls in the box are$\left( {b + r} \right)$.
There is given a condition that a ball is drawn randomly from the box and is returned to the box with another ball of the same color.
Now, assume that if the first drawn ball is blue, then the probability that the first drawn ball is blue is given as:
$P\left( B \right) = \dfrac{b}{{b + r}}$
According to the given condition the total number of blue balls in the box, after returning with another blue ball, is $\left( {b + 1} \right)$ and the number of red balls remains the same.
Then the probability that the second ball is blue$\left( {{P_{{b_1}}}} \right)$:
${P_{{b_1}}} = \dfrac{b}{{b + r}} \times \dfrac{{b + 1}}{{r + b + 1}}$ …(1)
Now, assume that if the first drawn ball is red, then the probability that the first drawn ball is red is given as:
$P\left( B \right) = \dfrac{r}{{b + r}}$
According to the given condition the total number of red balls in the box, after returning with another red ball, is $r + 1$, and the number of blue balls remains same.
Then the probability that the second ball is blue$\left( {{P_{{b_2}}}} \right)$
${P_{{b_2}}} = \dfrac{r}{{b + r}} \times \dfrac{b}{{r + b + 1}}$ …(2)
Therefore, the probability that the second drawn ball is blue is the sum of both the probability that if the first drawn ball is red$\left( {{P_{{b_1}}}} \right)$ and the first drawn ball is blue$\left( {{P_{{b_2}}}} \right)$.
$ \Rightarrow P = {P_{{b_1}}} + {P_{{b_2}}}$
Substitute $\dfrac{b}{{b + r}} \times \dfrac{{b + 1}}{{r + b + 1}}$ as the value of ${P_{{b_1}}}$ and $\dfrac{r}{{b + r}} \times \dfrac{b}{{r + b + 1}}$ as the value of${P_{{b_2}}}$ :
$ \Rightarrow P = \dfrac{b}{{b + r}} \times \dfrac{{b + 1}}{{r + b + 1}} + \dfrac{r}{{b + r}} \times \dfrac{b}{{r + b + 1}}$
Simplify the above expression:
$ \Rightarrow P = \dfrac{{b\left( {b + 1} \right) + rb}}{{\left( {b + r} \right)\left( {r + b + 1} \right)}}$
$ \Rightarrow P = \dfrac{{b\left( {r + b + 1} \right)}}{{\left( {b + r} \right)\left( {r + b + 1} \right)}}$
$ \Rightarrow P = \dfrac{b}{{\left( {b + r} \right)}}$
Therefore, the probability that the second ball is drawn from the box is blue is$\dfrac{b}{{\left( {b + r} \right)}}$.
Therefore the option A is correct.
[Note: There are $\left( {b + r} \right)$ balls in the box. The probability that the first drawn ball is red is given as:
$P\left( R \right) = \dfrac{{{\text{Number of red ball}}}}{{{\text{Total number of ball}}}} = \dfrac{r}{{r + b}}$
Similarly, the probability that the first drawn ball is blue is given as:
$P\left( B \right) = \dfrac{{{\text{Number of blue ball}}}}{{{\text{Total number of ball}}}} = \dfrac{b}{{r + b}}$]
Recently Updated Pages
Difference Between Mutually Exclusive and Independent Events
Difference Between Area and Volume
Centroid Formula - Explanation, Properties, and FAQs
Difference Between Percentage and Percentile: JEE Main 2024
Difference Between Work and Energy: JEE Main 2024
Difference Between Erosion and Corrosion: JEE Main 2024
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main 27 January 2024 Shift 1 Question Paper with Solutions
JEE Main Physics Question Paper with Answer Keys and Solutions
JEE Main Syllabus 2025 (Updated)
JEE Main Marks vs Rank 2025
JEE Main Marks Vs Percentile Vs Rank 2025: Calculate Percentile Using Marks
Other Pages
NCERT Solutions for Class 9 Maths Chapter 11 Surface Area and Volume
NCERT Solutions for Class 9 Maths Chapter 9 Circles
NCERT Solutions for Class 9 Maths Chapter 11 Surface Areas And Volumes Ex 11.3
NCERT Solutions for Class 9 Maths Chapter 12 Statistics
NCERT Solutions for Class 9 Maths Chapter 10 Heron'S Formula
NCERT Solutions for Class 9 Maths In Hindi Chapter 1 Number System