A bullet is fired from a rifle with a velocity \[750m/s\]. If the length of the rifle barrel is $60cm$. Calculate average velocity of the bullet, while being accelerated in the barrel, Find the time taken by bullet to travel.
Answer
Verified
116.7k+ views
Hint: Calculate average velocity, we add initial and final velocity and divide their sum with 2, then to find acceleration we use the third equation of motion, and finally to find out the time taken by a bullet to travel, we use the first equation of motion.
Given:
Length of barrel, $S = 60cm$
As the velocity of bullet is given in $m/s$then, the distance should be in $m$
So, $S = 0.6m$
Final velocity, $V = 750m/s$
Initial velocity, $U = 0$
Formula used:
${V_{avg}} = \dfrac{{U + V}}{2}$
${V^2} = {U^2} + 2aS$
$\dfrac{{V - U}}{T} = a$
Complete Step by step solution:
To calculate the average velocity of the bullet, we use a formula in which the sum of initial and final velocity is divided by 2.
Now, we will calculate the average velocity
${V_{avg}} = \dfrac{{U + V}}{2}$
\[ = \dfrac{{0 + 750}}{2}\](Putting value of $U$and$V$)
$ = 375m/s$
Here we got an average velocity of the bullet which is $375m/s$
Now, you know there is a relationship between initial velocity, final velocity, distance, and acceleration
${V^2} = {U^2} + 2aS$(Here $a$is an acceleration)
${750^2} = 0 + 2a \times 0.6$(Putting values of $U,S$and$V$ )
$a = \dfrac{{562500}}{{1.2}} = 468750 = 46.88 \times {10^4}m/s$
Here we got acceleration, which we can use in the relation of final velocity, initial velocity, acceleration, and time, where we have everything except time, so we will calculate time from this relation.$\dfrac{{V - U}}{T} = a$
After simplification, we can write this equation, as below
$T = \dfrac{{V - U}}{a}$
$ = \dfrac{{750 - 0}}{{46.88 \times {{10}^4}}}$(Putting values of $U,a$and$V$)
$ = 15.998 \times {10^{ - 4}}s$
Here, we have calculated the time taken by a bullet to travel.
Note: Point to be noted is, as we know that at the starting point the bullet was in the rifle at rest position, so we will assume that the initial velocity of the bullet is zero. And we should note equations of motion to relate our given value to find out the acceleration of the bullet and time taken by the bullet.
Given:
Length of barrel, $S = 60cm$
As the velocity of bullet is given in $m/s$then, the distance should be in $m$
So, $S = 0.6m$
Final velocity, $V = 750m/s$
Initial velocity, $U = 0$
Formula used:
${V_{avg}} = \dfrac{{U + V}}{2}$
${V^2} = {U^2} + 2aS$
$\dfrac{{V - U}}{T} = a$
Complete Step by step solution:
To calculate the average velocity of the bullet, we use a formula in which the sum of initial and final velocity is divided by 2.
Now, we will calculate the average velocity
${V_{avg}} = \dfrac{{U + V}}{2}$
\[ = \dfrac{{0 + 750}}{2}\](Putting value of $U$and$V$)
$ = 375m/s$
Here we got an average velocity of the bullet which is $375m/s$
Now, you know there is a relationship between initial velocity, final velocity, distance, and acceleration
${V^2} = {U^2} + 2aS$(Here $a$is an acceleration)
${750^2} = 0 + 2a \times 0.6$(Putting values of $U,S$and$V$ )
$a = \dfrac{{562500}}{{1.2}} = 468750 = 46.88 \times {10^4}m/s$
Here we got acceleration, which we can use in the relation of final velocity, initial velocity, acceleration, and time, where we have everything except time, so we will calculate time from this relation.$\dfrac{{V - U}}{T} = a$
After simplification, we can write this equation, as below
$T = \dfrac{{V - U}}{a}$
$ = \dfrac{{750 - 0}}{{46.88 \times {{10}^4}}}$(Putting values of $U,a$and$V$)
$ = 15.998 \times {10^{ - 4}}s$
Here, we have calculated the time taken by a bullet to travel.
Note: Point to be noted is, as we know that at the starting point the bullet was in the rifle at rest position, so we will assume that the initial velocity of the bullet is zero. And we should note equations of motion to relate our given value to find out the acceleration of the bullet and time taken by the bullet.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids