
A car going at a speed of ${\text{7m}}{{\text{s}}^{{\text{ - 1}}}}$. Can be stopped by applying brakes in $\alpha$ shortest distance of $10$m. Show that the total friction force opposing the motion, when brakes are applied. Is $1/{4^{th}}$ of the weight of the car. $\left( {{\text{g = }}\;{\text{9}}{\text{.8m}}{{\text{s}}^{{\text{ - 1}}}}} \right)$
Answer
232.8k+ views
Hint: By seeing the question we can say that if the car stopped its final velocity will become $0$, Hence by given data we can calculate acceleration. Also the mass of the car is not given in the question but we know that force is mass multiplied by product. From force we can find mass.
Formula used:
$\left( {\text{i}} \right)\;{{\text{V}}^{\text{2}}}\;{\text{ = }}{{\text{u}}^{\text{2}}}{\text{ + 2as}}$
\[V\] is final velocity
\[u\] is initial velocity
\[a\] is acceleration
$\left( {{\text{ii}}} \right)$ Force ${\text{ = }}$ ${{Mass \times acceleration}}$
${\text{F = }}\;{{m \times a}}$.
Complete step by step answer:
We have given, a car is at speed ${\text{7m}}{{\text{s}}^{{\text{ - 1}}}}$ moving and suddenly it stopped by applying brakes so its final velocity become $0.$ and distance travelled by it is ${\text{10m}}$. We have to show the total resistance force (functional force) is $\dfrac{1}{4}$ times the weight of the car.
Data given,
${\text{u = }}\;{\text{7m/s}}\;{\text{,V = 0,}}\;{\text{s = 10m,}}\;{\text{& }}\;{\text{acceleration = }}\;{\text{?}}$
So,
By using ${{\text{3}}^{{\text{rd}}}}$ equation of Motion
${\text{V = }}\;{{\text{u}}^{\text{2}}}{\text{ + 2as}}$
So, ${\text{a = }}\;\dfrac{{{{\text{V}}^{{2}}}{\text{ - }}{{\text{u}}^{\text{2}}}}}{{{\text{2s}}}}$
${\text{a}}\;{\text{ = }}\;\dfrac{{{{\left( {\text{0}} \right)}^{\text{2}}}{\text{ - }}{{\left( {\text{7}} \right)}^{\text{2}}}}}{{{{2 \times 10}}}}$
$\Rightarrow {\text{a}}\;{\text{ = }}\;\dfrac{{{\text{ - 49}}}}{{{\text{20}}\;}}\;\; \Rightarrow {\text{ - 2}}{\text{.45m/}}{{\text{s}}^{\text{2}}}$
Now,
$2.45$ can also be written as $a = \;\dfrac{{49}}{{20}}$
$ \Rightarrow \; a = \dfrac{{49 \times 2}}{{20 \times 2}}\; = \;\dfrac{{98}}{{40}}\; = \;\dfrac{{9.8}}{4}\; = \dfrac{g}{4}\;\left( {\because g = \,9.8} \right)$
Now, the resistance or frictional force ${\text{ = }}\;{\text{ma}}$
So, the total frictional force opposing the motion in $\dfrac{1}{4}$ times the weight of car R(functional force) $ = \;\dfrac{1}{4}$ weight of car.
Note: In order to solve this question, we need to count the acceleration in terms of ${\text{g}}$ as you have seen in the solution. Negative sign shows that the motion is in the opposite direction with the frictional force or resistance force. It must be noted that frictional force is always in the opposite direction of the motion.
Formula used:
$\left( {\text{i}} \right)\;{{\text{V}}^{\text{2}}}\;{\text{ = }}{{\text{u}}^{\text{2}}}{\text{ + 2as}}$
\[V\] is final velocity
\[u\] is initial velocity
\[a\] is acceleration
$\left( {{\text{ii}}} \right)$ Force ${\text{ = }}$ ${{Mass \times acceleration}}$
${\text{F = }}\;{{m \times a}}$.
Complete step by step answer:
We have given, a car is at speed ${\text{7m}}{{\text{s}}^{{\text{ - 1}}}}$ moving and suddenly it stopped by applying brakes so its final velocity become $0.$ and distance travelled by it is ${\text{10m}}$. We have to show the total resistance force (functional force) is $\dfrac{1}{4}$ times the weight of the car.
Data given,
${\text{u = }}\;{\text{7m/s}}\;{\text{,V = 0,}}\;{\text{s = 10m,}}\;{\text{& }}\;{\text{acceleration = }}\;{\text{?}}$
So,
By using ${{\text{3}}^{{\text{rd}}}}$ equation of Motion
${\text{V = }}\;{{\text{u}}^{\text{2}}}{\text{ + 2as}}$
So, ${\text{a = }}\;\dfrac{{{{\text{V}}^{{2}}}{\text{ - }}{{\text{u}}^{\text{2}}}}}{{{\text{2s}}}}$
${\text{a}}\;{\text{ = }}\;\dfrac{{{{\left( {\text{0}} \right)}^{\text{2}}}{\text{ - }}{{\left( {\text{7}} \right)}^{\text{2}}}}}{{{{2 \times 10}}}}$
$\Rightarrow {\text{a}}\;{\text{ = }}\;\dfrac{{{\text{ - 49}}}}{{{\text{20}}\;}}\;\; \Rightarrow {\text{ - 2}}{\text{.45m/}}{{\text{s}}^{\text{2}}}$
Now,
$2.45$ can also be written as $a = \;\dfrac{{49}}{{20}}$
$ \Rightarrow \; a = \dfrac{{49 \times 2}}{{20 \times 2}}\; = \;\dfrac{{98}}{{40}}\; = \;\dfrac{{9.8}}{4}\; = \dfrac{g}{4}\;\left( {\because g = \,9.8} \right)$
Now, the resistance or frictional force ${\text{ = }}\;{\text{ma}}$
So, the total frictional force opposing the motion in $\dfrac{1}{4}$ times the weight of car R(functional force) $ = \;\dfrac{1}{4}$ weight of car.
Note: In order to solve this question, we need to count the acceleration in terms of ${\text{g}}$ as you have seen in the solution. Negative sign shows that the motion is in the opposite direction with the frictional force or resistance force. It must be noted that frictional force is always in the opposite direction of the motion.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

