Answer
Verified
110.7k+ views
Hint: If a and b are two non-zero vectors and is the angle between them, their scalar product (or dot product) is denoted by \[a \cdot b\] and defined as the scalar \[\left| a \right|\left| b \right|{\rm{ }}cos\theta \], where |a| and |b| are moduli of a and b respectively and \[\theta \]. A scalar quantity is the dot product of two vectors.
Formula Used:The dot product of two vectors can be calculated as follows:
\[{\bf{a}}.\left( {{\bf{b}} + {\bf{c}}} \right) = {\bf{a}}.{\bf{b}} + {\bf{a}}.{\bf{c}}\]
Complete step by step solution:If a, b, and c are three vectors, their scalar triple product can be considered as the dot product of \[a\]and \[(b \times c)\]
It is commonly represented by
\[a \cdot \left( {b{\rm{ }} \times {\rm{ }}c} \right)\;\]
Or
\[\left[ {a{\rm{ }}b{\rm{ }}c} \right]\]
We have been given in the problem that,
\[a \cdot (b \times c)\]
According to the property of scalar triple product, we have
The value of the scalar triple product remains constant while ‘a’, ‘b’, and ‘c’ is cyclically permuted.
\[\left( {a{\rm{ }} \times {\rm{ }}b} \right) \cdot c = \left( {b{\rm{ }} \times {\rm{ }}c} \right) \cdot a\]
\[ = {\rm{ }}\left( {c{\rm{ }} \times {\rm{ }}a} \right).{\rm{ }}b\]
Or it can also be written as,
\[\left[ {a{\rm{ }}b{\rm{ }}c} \right]{\rm{ }} = {\rm{ }}\left[ {b{\rm{ }}c{\rm{ }}a} \right]{\rm{ }} = {\rm{ }}\left[ {c{\rm{ }}a{\rm{ }}b} \right]\]
The cyclic arrangement of vectors in a scalar triple product affects the sign but not the magnitude of the product.
That is, \[\left[ {a{\rm{ }}b{\rm{ }}c} \right] = - \left[ {b{\rm{ }}a{\rm{ }}c} \right]{\rm{ = }} - \left[ {c{\rm{ }}b{\rm{ }}a} \right] = - \left[ {a{\rm{ }}c{\rm{ }}b} \right]\]
The placements of the dot and cross in a scalar triple product can be swapped as long as the vectors' cyclic order remains constant.
That is, \[\left( {a{\rm{ }} \times {\rm{ }}b} \right) \cdot c{\rm{ }} = {\rm{ }}a \cdot \left( {b{\rm{ }} \times {\rm{ }}c} \right)\]
If any two of the vectors are equal, the scalar triple product of the three vectors is zero.
Therefore, the term \[a \cdot (b \times c)\] is equal to \[b \cdot \left( {c \times a} \right)\]
Option ‘C’ is correct
Note: The relation \[\left[ {a{\rm{ }}b{\rm{ }}c} \right] = 0\]is a necessary and sufficient condition for three non-zero non-collinear vectors to be coplanar.
The expression\[\left[ {{\rm{ }}a{\rm{ }}b{\rm{ }}c} \right] + \left[ {d{\rm{ }}c{\rm{ }}a} \right] + \left[ {d{\rm{ }}a{\rm{ }}b} \right] = \left[ {a{\rm{ }}b{\rm{ }}c} \right]\], four points with position vectors ‘a’, ‘b’, ‘c’, and ‘d’ are coplanar.
The volume of a parallelepiped with coterminous edges a, b, and c is \[\left[ {a{\rm{ }}b{\rm{ }}c} \right]\] or \[a\left( {b{\rm{ }} \times {\rm{ }}c} \right)\].
Formula Used:The dot product of two vectors can be calculated as follows:
\[{\bf{a}}.\left( {{\bf{b}} + {\bf{c}}} \right) = {\bf{a}}.{\bf{b}} + {\bf{a}}.{\bf{c}}\]
Complete step by step solution:If a, b, and c are three vectors, their scalar triple product can be considered as the dot product of \[a\]and \[(b \times c)\]
It is commonly represented by
\[a \cdot \left( {b{\rm{ }} \times {\rm{ }}c} \right)\;\]
Or
\[\left[ {a{\rm{ }}b{\rm{ }}c} \right]\]
We have been given in the problem that,
\[a \cdot (b \times c)\]
According to the property of scalar triple product, we have
The value of the scalar triple product remains constant while ‘a’, ‘b’, and ‘c’ is cyclically permuted.
\[\left( {a{\rm{ }} \times {\rm{ }}b} \right) \cdot c = \left( {b{\rm{ }} \times {\rm{ }}c} \right) \cdot a\]
\[ = {\rm{ }}\left( {c{\rm{ }} \times {\rm{ }}a} \right).{\rm{ }}b\]
Or it can also be written as,
\[\left[ {a{\rm{ }}b{\rm{ }}c} \right]{\rm{ }} = {\rm{ }}\left[ {b{\rm{ }}c{\rm{ }}a} \right]{\rm{ }} = {\rm{ }}\left[ {c{\rm{ }}a{\rm{ }}b} \right]\]
The cyclic arrangement of vectors in a scalar triple product affects the sign but not the magnitude of the product.
That is, \[\left[ {a{\rm{ }}b{\rm{ }}c} \right] = - \left[ {b{\rm{ }}a{\rm{ }}c} \right]{\rm{ = }} - \left[ {c{\rm{ }}b{\rm{ }}a} \right] = - \left[ {a{\rm{ }}c{\rm{ }}b} \right]\]
The placements of the dot and cross in a scalar triple product can be swapped as long as the vectors' cyclic order remains constant.
That is, \[\left( {a{\rm{ }} \times {\rm{ }}b} \right) \cdot c{\rm{ }} = {\rm{ }}a \cdot \left( {b{\rm{ }} \times {\rm{ }}c} \right)\]
If any two of the vectors are equal, the scalar triple product of the three vectors is zero.
Therefore, the term \[a \cdot (b \times c)\] is equal to \[b \cdot \left( {c \times a} \right)\]
Option ‘C’ is correct
Note: The relation \[\left[ {a{\rm{ }}b{\rm{ }}c} \right] = 0\]is a necessary and sufficient condition for three non-zero non-collinear vectors to be coplanar.
The expression\[\left[ {{\rm{ }}a{\rm{ }}b{\rm{ }}c} \right] + \left[ {d{\rm{ }}c{\rm{ }}a} \right] + \left[ {d{\rm{ }}a{\rm{ }}b} \right] = \left[ {a{\rm{ }}b{\rm{ }}c} \right]\], four points with position vectors ‘a’, ‘b’, ‘c’, and ‘d’ are coplanar.
The volume of a parallelepiped with coterminous edges a, b, and c is \[\left[ {a{\rm{ }}b{\rm{ }}c} \right]\] or \[a\left( {b{\rm{ }} \times {\rm{ }}c} \right)\].
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
JEE Main 2023 (January 25th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Displacement-Time Graph and Velocity-Time Graph for JEE
Degree of Dissociation and Its Formula With Solved Example for JEE
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Class 12 Maths Revision Notes for Three Dimensional Geometry of Chapter 11
Inertial and Non-Inertial Frame of Reference - JEE Important Topic