
\[a \cdot (b \times c)\] is equal to
A. \[b \cdot (a \times c)\]
B. \[c \cdot (b \times a)\]
C. It is obvious.
D. None of these
Answer
232.8k+ views
Hint: If a and b are two non-zero vectors and is the angle between them, their scalar product (or dot product) is denoted by \[a \cdot b\] and defined as the scalar \[\left| a \right|\left| b \right|{\rm{ }}cos\theta \], where |a| and |b| are moduli of a and b respectively and \[\theta \]. A scalar quantity is the dot product of two vectors.
Formula Used:The dot product of two vectors can be calculated as follows:
\[{\bf{a}}.\left( {{\bf{b}} + {\bf{c}}} \right) = {\bf{a}}.{\bf{b}} + {\bf{a}}.{\bf{c}}\]
Complete step by step solution:If a, b, and c are three vectors, their scalar triple product can be considered as the dot product of \[a\]and \[(b \times c)\]
It is commonly represented by
\[a \cdot \left( {b{\rm{ }} \times {\rm{ }}c} \right)\;\]
Or
\[\left[ {a{\rm{ }}b{\rm{ }}c} \right]\]
We have been given in the problem that,
\[a \cdot (b \times c)\]
According to the property of scalar triple product, we have
The value of the scalar triple product remains constant while ‘a’, ‘b’, and ‘c’ is cyclically permuted.
\[\left( {a{\rm{ }} \times {\rm{ }}b} \right) \cdot c = \left( {b{\rm{ }} \times {\rm{ }}c} \right) \cdot a\]
\[ = {\rm{ }}\left( {c{\rm{ }} \times {\rm{ }}a} \right).{\rm{ }}b\]
Or it can also be written as,
\[\left[ {a{\rm{ }}b{\rm{ }}c} \right]{\rm{ }} = {\rm{ }}\left[ {b{\rm{ }}c{\rm{ }}a} \right]{\rm{ }} = {\rm{ }}\left[ {c{\rm{ }}a{\rm{ }}b} \right]\]
The cyclic arrangement of vectors in a scalar triple product affects the sign but not the magnitude of the product.
That is, \[\left[ {a{\rm{ }}b{\rm{ }}c} \right] = - \left[ {b{\rm{ }}a{\rm{ }}c} \right]{\rm{ = }} - \left[ {c{\rm{ }}b{\rm{ }}a} \right] = - \left[ {a{\rm{ }}c{\rm{ }}b} \right]\]
The placements of the dot and cross in a scalar triple product can be swapped as long as the vectors' cyclic order remains constant.
That is, \[\left( {a{\rm{ }} \times {\rm{ }}b} \right) \cdot c{\rm{ }} = {\rm{ }}a \cdot \left( {b{\rm{ }} \times {\rm{ }}c} \right)\]
If any two of the vectors are equal, the scalar triple product of the three vectors is zero.
Therefore, the term \[a \cdot (b \times c)\] is equal to \[b \cdot \left( {c \times a} \right)\]
Option ‘C’ is correct
Note: The relation \[\left[ {a{\rm{ }}b{\rm{ }}c} \right] = 0\]is a necessary and sufficient condition for three non-zero non-collinear vectors to be coplanar.
The expression\[\left[ {{\rm{ }}a{\rm{ }}b{\rm{ }}c} \right] + \left[ {d{\rm{ }}c{\rm{ }}a} \right] + \left[ {d{\rm{ }}a{\rm{ }}b} \right] = \left[ {a{\rm{ }}b{\rm{ }}c} \right]\], four points with position vectors ‘a’, ‘b’, ‘c’, and ‘d’ are coplanar.
The volume of a parallelepiped with coterminous edges a, b, and c is \[\left[ {a{\rm{ }}b{\rm{ }}c} \right]\] or \[a\left( {b{\rm{ }} \times {\rm{ }}c} \right)\].
Formula Used:The dot product of two vectors can be calculated as follows:
\[{\bf{a}}.\left( {{\bf{b}} + {\bf{c}}} \right) = {\bf{a}}.{\bf{b}} + {\bf{a}}.{\bf{c}}\]
Complete step by step solution:If a, b, and c are three vectors, their scalar triple product can be considered as the dot product of \[a\]and \[(b \times c)\]
It is commonly represented by
\[a \cdot \left( {b{\rm{ }} \times {\rm{ }}c} \right)\;\]
Or
\[\left[ {a{\rm{ }}b{\rm{ }}c} \right]\]
We have been given in the problem that,
\[a \cdot (b \times c)\]
According to the property of scalar triple product, we have
The value of the scalar triple product remains constant while ‘a’, ‘b’, and ‘c’ is cyclically permuted.
\[\left( {a{\rm{ }} \times {\rm{ }}b} \right) \cdot c = \left( {b{\rm{ }} \times {\rm{ }}c} \right) \cdot a\]
\[ = {\rm{ }}\left( {c{\rm{ }} \times {\rm{ }}a} \right).{\rm{ }}b\]
Or it can also be written as,
\[\left[ {a{\rm{ }}b{\rm{ }}c} \right]{\rm{ }} = {\rm{ }}\left[ {b{\rm{ }}c{\rm{ }}a} \right]{\rm{ }} = {\rm{ }}\left[ {c{\rm{ }}a{\rm{ }}b} \right]\]
The cyclic arrangement of vectors in a scalar triple product affects the sign but not the magnitude of the product.
That is, \[\left[ {a{\rm{ }}b{\rm{ }}c} \right] = - \left[ {b{\rm{ }}a{\rm{ }}c} \right]{\rm{ = }} - \left[ {c{\rm{ }}b{\rm{ }}a} \right] = - \left[ {a{\rm{ }}c{\rm{ }}b} \right]\]
The placements of the dot and cross in a scalar triple product can be swapped as long as the vectors' cyclic order remains constant.
That is, \[\left( {a{\rm{ }} \times {\rm{ }}b} \right) \cdot c{\rm{ }} = {\rm{ }}a \cdot \left( {b{\rm{ }} \times {\rm{ }}c} \right)\]
If any two of the vectors are equal, the scalar triple product of the three vectors is zero.
Therefore, the term \[a \cdot (b \times c)\] is equal to \[b \cdot \left( {c \times a} \right)\]
Option ‘C’ is correct
Note: The relation \[\left[ {a{\rm{ }}b{\rm{ }}c} \right] = 0\]is a necessary and sufficient condition for three non-zero non-collinear vectors to be coplanar.
The expression\[\left[ {{\rm{ }}a{\rm{ }}b{\rm{ }}c} \right] + \left[ {d{\rm{ }}c{\rm{ }}a} \right] + \left[ {d{\rm{ }}a{\rm{ }}b} \right] = \left[ {a{\rm{ }}b{\rm{ }}c} \right]\], four points with position vectors ‘a’, ‘b’, ‘c’, and ‘d’ are coplanar.
The volume of a parallelepiped with coterminous edges a, b, and c is \[\left[ {a{\rm{ }}b{\rm{ }}c} \right]\] or \[a\left( {b{\rm{ }} \times {\rm{ }}c} \right)\].
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

