When a ceiling fan is switched off, its angular velocity falls to half while it makes 36 rotations How many more rotations will it make before coming to rest.
A) $24$
B) $36$
C) $18$
D) $12$
Answer
Verified
409.5k+ views
Hint: We solve this question in two parts first we consider when the fan is switched off then its velocity becomes half of its initial velocity before this it makes $36$ round for this part we apply the equation of rotational motion. And in the second time we consider when its angular velocity is half and it becomes after some time zero means it comes to rest considering it makes $n$ round before stop. We want to calculate this no of round which it completes before stopping.
Complete step by step solution:
We assume that the initial angular velocity of fan just after switching off the fan is $\omega $
When it complete $36$ round its angular velocity decrease to $\dfrac{\omega }{2}$ lets assume angular acceleration is $\alpha $
Third equation of rotational motion for retarded motion
$ \Rightarrow {\omega ^2} = {\omega ^2}_0 - 2\alpha \theta $
Where $\omega $ final angular velocity and ${\omega _0}$ is initial angular velocity ,$\alpha $ denotes angular acceleration and $\theta $ is angular displacement
For this case initial angular velocity is $ = \omega $
Final angular velocity is $\dfrac{\omega }{2}$
Angular displacement in 36 round is $36 \times 2\pi $
Put these value in above equation
$ \Rightarrow {\left( {\dfrac{\omega }{2}} \right)^2} = {\left( \omega \right)^2} - 2\left( \alpha \right)\left( {36 \times 2\pi } \right)$
$ \Rightarrow 2\left( \alpha \right)\left( {36 \times 2\pi } \right) = {\left( \omega \right)^2} - {\left( {\dfrac{\omega }{2}} \right)^2}$
Solving this
$ \Rightarrow 2\left( \alpha \right)\left( {36 \times 2\pi } \right) = {\omega ^2} - \dfrac{{{\omega ^2}}}{4}$
$ \Rightarrow 2\left( \alpha \right)\left( {36 \times 2\pi } \right) = \dfrac{{\left( {4{\omega ^2} - {\omega ^2}} \right)}}{4}$ ........... (1)
Step 2
Now we take second half part in which fan get rest from $\dfrac{\omega }{2}$ angular velocity
Let us assume it rotate $n$ round before stop means angular displacement $\theta = 2\pi \left( n \right)$
Initial angular velocity $\dfrac{\omega }{2}$
Final angular velocity $0$
Apply equation of motion
$ \Rightarrow {\left( 0 \right)^2} = {\left( {\dfrac{\omega }{2}} \right)^2} - 2\left( \alpha \right)\left( {n \times 2\pi } \right)$
$ \Rightarrow 2\left( \alpha \right)\left( {n \times 2\pi } \right) = \dfrac{{{\omega ^2}}}{4}$ .................. (2)
Divide equation (1) by (2) then
$ \Rightarrow \dfrac{{2\left( \alpha \right)\left( {36 \times 2\pi } \right)}}{{2\left( \alpha \right)\left( {n \times 2\pi } \right)}} = \dfrac{{\left( {4{\omega ^2} - {\omega ^2}} \right)}}{{\left( {{\omega ^2}} \right)}}$
Further solving
$ \Rightarrow \dfrac{{36}}{n} = \dfrac{{{\omega ^2}\left( {4 - 1} \right)}}{{{\omega ^2}}}$
Solving this equation
$ \Rightarrow 3n = 36$
$
\therefore n = \dfrac{{36}}{3} \\
\therefore n = 12 \\
$
Hence option (D) is correct.
Note: Angular displacement is the angle in radian swap by radius arm on centre. We use here angular displacement relation with round of fan how can be relate round of fan with angular displacement it is given below:
We know angular displacement in one round is $2\pi $ radian.
So angular displacement $\theta $ in $n$ round is $n \times 2\pi $ radian.
Complete step by step solution:
We assume that the initial angular velocity of fan just after switching off the fan is $\omega $
When it complete $36$ round its angular velocity decrease to $\dfrac{\omega }{2}$ lets assume angular acceleration is $\alpha $
Third equation of rotational motion for retarded motion
$ \Rightarrow {\omega ^2} = {\omega ^2}_0 - 2\alpha \theta $
Where $\omega $ final angular velocity and ${\omega _0}$ is initial angular velocity ,$\alpha $ denotes angular acceleration and $\theta $ is angular displacement
For this case initial angular velocity is $ = \omega $
Final angular velocity is $\dfrac{\omega }{2}$
Angular displacement in 36 round is $36 \times 2\pi $
Put these value in above equation
$ \Rightarrow {\left( {\dfrac{\omega }{2}} \right)^2} = {\left( \omega \right)^2} - 2\left( \alpha \right)\left( {36 \times 2\pi } \right)$
$ \Rightarrow 2\left( \alpha \right)\left( {36 \times 2\pi } \right) = {\left( \omega \right)^2} - {\left( {\dfrac{\omega }{2}} \right)^2}$
Solving this
$ \Rightarrow 2\left( \alpha \right)\left( {36 \times 2\pi } \right) = {\omega ^2} - \dfrac{{{\omega ^2}}}{4}$
$ \Rightarrow 2\left( \alpha \right)\left( {36 \times 2\pi } \right) = \dfrac{{\left( {4{\omega ^2} - {\omega ^2}} \right)}}{4}$ ........... (1)
Step 2
Now we take second half part in which fan get rest from $\dfrac{\omega }{2}$ angular velocity
Let us assume it rotate $n$ round before stop means angular displacement $\theta = 2\pi \left( n \right)$
Initial angular velocity $\dfrac{\omega }{2}$
Final angular velocity $0$
Apply equation of motion
$ \Rightarrow {\left( 0 \right)^2} = {\left( {\dfrac{\omega }{2}} \right)^2} - 2\left( \alpha \right)\left( {n \times 2\pi } \right)$
$ \Rightarrow 2\left( \alpha \right)\left( {n \times 2\pi } \right) = \dfrac{{{\omega ^2}}}{4}$ .................. (2)
Divide equation (1) by (2) then
$ \Rightarrow \dfrac{{2\left( \alpha \right)\left( {36 \times 2\pi } \right)}}{{2\left( \alpha \right)\left( {n \times 2\pi } \right)}} = \dfrac{{\left( {4{\omega ^2} - {\omega ^2}} \right)}}{{\left( {{\omega ^2}} \right)}}$
Further solving
$ \Rightarrow \dfrac{{36}}{n} = \dfrac{{{\omega ^2}\left( {4 - 1} \right)}}{{{\omega ^2}}}$
Solving this equation
$ \Rightarrow 3n = 36$
$
\therefore n = \dfrac{{36}}{3} \\
\therefore n = 12 \\
$
Hence option (D) is correct.
Note: Angular displacement is the angle in radian swap by radius arm on centre. We use here angular displacement relation with round of fan how can be relate round of fan with angular displacement it is given below:
We know angular displacement in one round is $2\pi $ radian.
So angular displacement $\theta $ in $n$ round is $n \times 2\pi $ radian.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids