A current of 10A is flowing in a wire of length $1.5m$. A force of $15N$ acts on it when it is placed in a uniform magnetic field of $2T$. The angle between the magnetic field and the direction of the current is:
(A) ${30^ \circ }$
(B) ${45^ \circ }$
(C) ${60^ \circ }$
(D) ${90^ \circ }$
Answer
Verified
116.1k+ views
Hint: To solve this question, we have to use the formula of the force on a current carrying wire when it is placed in a uniform magnetic field. Then we have to substitute the given values into that formula to get the required value of the angle between the magnetic field and the direction of the current.
Formula used: The formula used to solve this question is given by
\[\vec F = I\left( {\vec l \times \vec B} \right)\], here $\vec F$ is the force acting on a wire having a length of $l$ and carrying a current of $I$, when it is placed in a uniform magnetic field of $\vec B$.
Complete step by step solution:
Let the angle between the magnetic field be $\theta $.
We know that the force exerted on a current carrying wire when it is placed in a magnetic field is given by
\[\vec F = I\left( {\vec l \times \vec B} \right)\]
Writing the magnitudes on both the sides, we get
\[\left| {\vec F} \right| = I\left| {\left( {\vec l \times \vec B} \right)} \right|\]
$ \Rightarrow F = IlB\sin \theta $
According to the question, $F = 15N$, $I = 10{\text{A}}$, $l = 1.5m$, and $B = 2T$. Substituting these above, we get
$15 = 10 \times 1.5 \times 2 \times \sin \theta $
$15 = 30\sin \theta $
Dividing both the sides by $30$ we get
$\sin \theta = \dfrac{{15}}{{30}}$
$ \Rightarrow \sin \theta = 0.5$
Taking sine inverse both the sides, we finally get
$\theta = {30^ \circ }$
Thus, the angle between the magnetic field and the direction of the current is equal to ${30^ \circ }$.
Hence, the correct answer is option A.
Note: Although the cross product which appears in the expression for force on a current carrying wire is between the length and the magnetic field, it is defined between the magnetic field and the direction of current. This is done because we cannot take the cross product of the current as it is a scalar quantity.
Formula used: The formula used to solve this question is given by
\[\vec F = I\left( {\vec l \times \vec B} \right)\], here $\vec F$ is the force acting on a wire having a length of $l$ and carrying a current of $I$, when it is placed in a uniform magnetic field of $\vec B$.
Complete step by step solution:
Let the angle between the magnetic field be $\theta $.
We know that the force exerted on a current carrying wire when it is placed in a magnetic field is given by
\[\vec F = I\left( {\vec l \times \vec B} \right)\]
Writing the magnitudes on both the sides, we get
\[\left| {\vec F} \right| = I\left| {\left( {\vec l \times \vec B} \right)} \right|\]
$ \Rightarrow F = IlB\sin \theta $
According to the question, $F = 15N$, $I = 10{\text{A}}$, $l = 1.5m$, and $B = 2T$. Substituting these above, we get
$15 = 10 \times 1.5 \times 2 \times \sin \theta $
$15 = 30\sin \theta $
Dividing both the sides by $30$ we get
$\sin \theta = \dfrac{{15}}{{30}}$
$ \Rightarrow \sin \theta = 0.5$
Taking sine inverse both the sides, we finally get
$\theta = {30^ \circ }$
Thus, the angle between the magnetic field and the direction of the current is equal to ${30^ \circ }$.
Hence, the correct answer is option A.
Note: Although the cross product which appears in the expression for force on a current carrying wire is between the length and the magnetic field, it is defined between the magnetic field and the direction of current. This is done because we cannot take the cross product of the current as it is a scalar quantity.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
Young's Double Slit Experiment Step by Step Derivation
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Charging and Discharging of Capacitor
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Physics Average Value and RMS Value JEE Main 2025