Answer
Verified
99.6k+ views
Hint: The internal resistance of the source will be in series with the external resistance. The current through a resistor having resistance $R$ connected to a voltage source having voltage $V$ is given by $I = \dfrac{V}{R}$ .
The heat generated in the resistor is basically the multiplication of power and time and power is given by ${I^2}R$ where $I$ is the current flowing through the resistance $R$ .
Complete step by step answer:
In this question we have to first find the relation between current flowing through a resistor and voltage given by the source. Ohm’s law given this relation as $V = IR$ . So, the current through a resistor having resistance $R$ connected to a voltage source having voltage $V$ is given by $I = \dfrac{V}{R}$ .
Now, as we know that the internal resistance of the source will be in series with the external resistance. So, the equivalent resistance will be the sum of external resistance and the internal resistance.
Given that the source is the same. Let the emf of the source be $V$ and its internal resistance be $r$ .
Then the current through the first coil is given by
${I_1} = \dfrac{V}{{{R_1} + r}}$
Similarly, the current through the second coil is given by
${I_2} = \dfrac{V}{{{R_2} + r}}$
We know that the heat generated in the resistor is basically the multiplication of power and time and power is given by ${I^2}R$ where $I$ is the current flowing through the resistance $R$ .
Therefore the heat generated in first coil in time $t$ will be
${H_1} = {I_1}^2{R_1}t = {\left( {\dfrac{V}{{{R_1} + r}}} \right)^2}{R_1}t$
Similarly, the heat generated in second coil in same time $t$ will be
${H_2} = {I_2}^2{R_2}t = {\left( {\dfrac{V}{{{R_2} + r}}} \right)^2}{R_2}t$
Now it is given in the question that the heat generated is same for both the coils i.e. ${H_1} = {H_2}$ . So,
${\left( {\dfrac{V}{{{R_1} + r}}} \right)^2}{R_1}t = {\left( {\dfrac{V}{{{R_2} + r}}} \right)^2}{R_2}t$
On simplifying we have
$\dfrac{{{R_1}}}{{{{\left( {{R_1} + r} \right)}^2}}} = \dfrac{{{R_2}}}{{{{\left( {{R_2} + r} \right)}^2}}}$
On cross multiplying we have
${R_1}\left( {{R_2}^2 + {r^2} + 2{R_2}r} \right) = {R_2}\left( {{R_1}^2 + {r^2} + 2{R_1}r} \right)$
On further solving the equation we get
${r^2}\left( {{R_1} - {R_2}} \right) = {R_1}{R_2}\left( {{R_1} - {R_2}} \right)$
But ${R_1} \ne {R_2}$ . So,
$r = \sqrt {{R_1}{R_2}} $ which is the internal resistance of the source.
Hence, option D is correct.
Note: The process of heating of resistance is also known as Joule’s heating or Ohmic heating. In this process, when an electric current passes through a conductor then heat is produced in it.
The main reason for formation of heat in resistors is the collision of the free electrons and many atoms of the resistor when an electric field is applied across a resistor. Mostly this generated heat is dissipated in the air in some time.
The heat generated in the resistor is basically the multiplication of power and time and power is given by ${I^2}R$ where $I$ is the current flowing through the resistance $R$ .
Complete step by step answer:
In this question we have to first find the relation between current flowing through a resistor and voltage given by the source. Ohm’s law given this relation as $V = IR$ . So, the current through a resistor having resistance $R$ connected to a voltage source having voltage $V$ is given by $I = \dfrac{V}{R}$ .
Now, as we know that the internal resistance of the source will be in series with the external resistance. So, the equivalent resistance will be the sum of external resistance and the internal resistance.
Given that the source is the same. Let the emf of the source be $V$ and its internal resistance be $r$ .
Then the current through the first coil is given by
${I_1} = \dfrac{V}{{{R_1} + r}}$
Similarly, the current through the second coil is given by
${I_2} = \dfrac{V}{{{R_2} + r}}$
We know that the heat generated in the resistor is basically the multiplication of power and time and power is given by ${I^2}R$ where $I$ is the current flowing through the resistance $R$ .
Therefore the heat generated in first coil in time $t$ will be
${H_1} = {I_1}^2{R_1}t = {\left( {\dfrac{V}{{{R_1} + r}}} \right)^2}{R_1}t$
Similarly, the heat generated in second coil in same time $t$ will be
${H_2} = {I_2}^2{R_2}t = {\left( {\dfrac{V}{{{R_2} + r}}} \right)^2}{R_2}t$
Now it is given in the question that the heat generated is same for both the coils i.e. ${H_1} = {H_2}$ . So,
${\left( {\dfrac{V}{{{R_1} + r}}} \right)^2}{R_1}t = {\left( {\dfrac{V}{{{R_2} + r}}} \right)^2}{R_2}t$
On simplifying we have
$\dfrac{{{R_1}}}{{{{\left( {{R_1} + r} \right)}^2}}} = \dfrac{{{R_2}}}{{{{\left( {{R_2} + r} \right)}^2}}}$
On cross multiplying we have
${R_1}\left( {{R_2}^2 + {r^2} + 2{R_2}r} \right) = {R_2}\left( {{R_1}^2 + {r^2} + 2{R_1}r} \right)$
On further solving the equation we get
${r^2}\left( {{R_1} - {R_2}} \right) = {R_1}{R_2}\left( {{R_1} - {R_2}} \right)$
But ${R_1} \ne {R_2}$ . So,
$r = \sqrt {{R_1}{R_2}} $ which is the internal resistance of the source.
Hence, option D is correct.
Note: The process of heating of resistance is also known as Joule’s heating or Ohmic heating. In this process, when an electric current passes through a conductor then heat is produced in it.
The main reason for formation of heat in resistors is the collision of the free electrons and many atoms of the resistor when an electric field is applied across a resistor. Mostly this generated heat is dissipated in the air in some time.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
A series RLC circuit consists of an 8Omega resistor class 12 physics JEE_Main
The shape of XeF5 + ion is A Pentagonal B Octahedral class 11 chemistry JEE_Main
A block A slides over another block B which is placed class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Two billiard balls of the same size and mass are in class 11 physics JEE_Main
A tetracyanomethane B carbon dioxide C benzene and class 11 chemistry JEE_Main