A current source drives a current in a coil of resistance ${R_1}$ for a time $t$ . The same source drives current in another coil of resistance ${R_2}$ for the same time. If heat generated is the same, find the internal resistance of the source.
A. $\dfrac{{{R_1}{R_2}}}{{{R_1} + {R_2}}}$
B. ${R_1} + {R_2}$
C. $0$
D. $\sqrt {{R_1}{R_2}} $
Answer
Verified
116.4k+ views
Hint: The internal resistance of the source will be in series with the external resistance. The current through a resistor having resistance $R$ connected to a voltage source having voltage $V$ is given by $I = \dfrac{V}{R}$ .
The heat generated in the resistor is basically the multiplication of power and time and power is given by ${I^2}R$ where $I$ is the current flowing through the resistance $R$ .
Complete step by step answer:
In this question we have to first find the relation between current flowing through a resistor and voltage given by the source. Ohm’s law given this relation as $V = IR$ . So, the current through a resistor having resistance $R$ connected to a voltage source having voltage $V$ is given by $I = \dfrac{V}{R}$ .
Now, as we know that the internal resistance of the source will be in series with the external resistance. So, the equivalent resistance will be the sum of external resistance and the internal resistance.
Given that the source is the same. Let the emf of the source be $V$ and its internal resistance be $r$ .
Then the current through the first coil is given by
${I_1} = \dfrac{V}{{{R_1} + r}}$
Similarly, the current through the second coil is given by
${I_2} = \dfrac{V}{{{R_2} + r}}$
We know that the heat generated in the resistor is basically the multiplication of power and time and power is given by ${I^2}R$ where $I$ is the current flowing through the resistance $R$ .
Therefore the heat generated in first coil in time $t$ will be
${H_1} = {I_1}^2{R_1}t = {\left( {\dfrac{V}{{{R_1} + r}}} \right)^2}{R_1}t$
Similarly, the heat generated in second coil in same time $t$ will be
${H_2} = {I_2}^2{R_2}t = {\left( {\dfrac{V}{{{R_2} + r}}} \right)^2}{R_2}t$
Now it is given in the question that the heat generated is same for both the coils i.e. ${H_1} = {H_2}$ . So,
${\left( {\dfrac{V}{{{R_1} + r}}} \right)^2}{R_1}t = {\left( {\dfrac{V}{{{R_2} + r}}} \right)^2}{R_2}t$
On simplifying we have
$\dfrac{{{R_1}}}{{{{\left( {{R_1} + r} \right)}^2}}} = \dfrac{{{R_2}}}{{{{\left( {{R_2} + r} \right)}^2}}}$
On cross multiplying we have
${R_1}\left( {{R_2}^2 + {r^2} + 2{R_2}r} \right) = {R_2}\left( {{R_1}^2 + {r^2} + 2{R_1}r} \right)$
On further solving the equation we get
${r^2}\left( {{R_1} - {R_2}} \right) = {R_1}{R_2}\left( {{R_1} - {R_2}} \right)$
But ${R_1} \ne {R_2}$ . So,
$r = \sqrt {{R_1}{R_2}} $ which is the internal resistance of the source.
Hence, option D is correct.
Note: The process of heating of resistance is also known as Joule’s heating or Ohmic heating. In this process, when an electric current passes through a conductor then heat is produced in it.
The main reason for formation of heat in resistors is the collision of the free electrons and many atoms of the resistor when an electric field is applied across a resistor. Mostly this generated heat is dissipated in the air in some time.
The heat generated in the resistor is basically the multiplication of power and time and power is given by ${I^2}R$ where $I$ is the current flowing through the resistance $R$ .
Complete step by step answer:
In this question we have to first find the relation between current flowing through a resistor and voltage given by the source. Ohm’s law given this relation as $V = IR$ . So, the current through a resistor having resistance $R$ connected to a voltage source having voltage $V$ is given by $I = \dfrac{V}{R}$ .
Now, as we know that the internal resistance of the source will be in series with the external resistance. So, the equivalent resistance will be the sum of external resistance and the internal resistance.
Given that the source is the same. Let the emf of the source be $V$ and its internal resistance be $r$ .
Then the current through the first coil is given by
${I_1} = \dfrac{V}{{{R_1} + r}}$
Similarly, the current through the second coil is given by
${I_2} = \dfrac{V}{{{R_2} + r}}$
We know that the heat generated in the resistor is basically the multiplication of power and time and power is given by ${I^2}R$ where $I$ is the current flowing through the resistance $R$ .
Therefore the heat generated in first coil in time $t$ will be
${H_1} = {I_1}^2{R_1}t = {\left( {\dfrac{V}{{{R_1} + r}}} \right)^2}{R_1}t$
Similarly, the heat generated in second coil in same time $t$ will be
${H_2} = {I_2}^2{R_2}t = {\left( {\dfrac{V}{{{R_2} + r}}} \right)^2}{R_2}t$
Now it is given in the question that the heat generated is same for both the coils i.e. ${H_1} = {H_2}$ . So,
${\left( {\dfrac{V}{{{R_1} + r}}} \right)^2}{R_1}t = {\left( {\dfrac{V}{{{R_2} + r}}} \right)^2}{R_2}t$
On simplifying we have
$\dfrac{{{R_1}}}{{{{\left( {{R_1} + r} \right)}^2}}} = \dfrac{{{R_2}}}{{{{\left( {{R_2} + r} \right)}^2}}}$
On cross multiplying we have
${R_1}\left( {{R_2}^2 + {r^2} + 2{R_2}r} \right) = {R_2}\left( {{R_1}^2 + {r^2} + 2{R_1}r} \right)$
On further solving the equation we get
${r^2}\left( {{R_1} - {R_2}} \right) = {R_1}{R_2}\left( {{R_1} - {R_2}} \right)$
But ${R_1} \ne {R_2}$ . So,
$r = \sqrt {{R_1}{R_2}} $ which is the internal resistance of the source.
Hence, option D is correct.
Note: The process of heating of resistance is also known as Joule’s heating or Ohmic heating. In this process, when an electric current passes through a conductor then heat is produced in it.
The main reason for formation of heat in resistors is the collision of the free electrons and many atoms of the resistor when an electric field is applied across a resistor. Mostly this generated heat is dissipated in the air in some time.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
Young's Double Slit Experiment Step by Step Derivation
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Charging and Discharging of Capacitor
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Physics Average Value and RMS Value JEE Main 2025