Answer
Verified
113.7k+ views
Hint: We will first understand that there will be two types of magnetics field \[ie,\] magnetic field due to magnet and magnetic field due to the earth . then we will find out the resultant magnetic field and then solve it further by using the formula for time period . Refer to the solution below.
Formula for time period is
\[ \Rightarrow T = 2\pi \sqrt {\dfrac{I}{{MB}}} \]
Where I is current , M is magnetic moment and B is magnetic field.
Complete step by step answer:
In the usual setting of deflection magnetometer, the field due to magnet \[\left( B \right)\] and horizontal component \[\left( {{B_H}} \right)\] of earth ‘s field are perpendicular to each other . Therefore the net field on the magnetic needle is \[\sqrt {{B^2} + {B_H}^2} \]
By tangent law ,\[B = {B_H}\tan \theta \]
\[{B_{net}} = \sqrt {{B^2} + {B_H}^2} \]
\[ \Rightarrow {B_{net}} = \sqrt {{B^2} + {B_H}^2} \]
\[ \Rightarrow {B_{net}} = \sqrt {{B_H}^2 + {B_H}^2{{\tan }^2}\theta } \]
Taking BH2 common
\[{B_{net}} = \sqrt {{B_H}^2(1 + {{\tan }^2}\theta )} \]
Since
\[{\sec ^2}\theta = 1 + {\tan ^2}\theta \]
\[\
\Rightarrow {B_{net}} = {B_H}\sqrt {{{\sec }^2}\theta } \\
\Rightarrow {B_{net}} = {B_H}\sec \theta \\
\Rightarrow {B_{net}} = B\dfrac{1}{{\cos \theta }} \\
\ \]
Now the time period with magnet is given by
\[T = 2\pi \sqrt {\dfrac{I}{{M{B_{net}}}}} \] \[ \to \]\[\left( 1 \right)\]
Again time period when magnet is removed ,
\[{T_0} = 2\pi \sqrt {\dfrac{I}{{M{B_H}}}} \] \[ \to \]\[\left( 2 \right)\]
Dividing \[\left( 1 \right)\]by \[\left( 2 \right)\] , we get
\[\dfrac{T}{{{T_0}}} = \dfrac{{2\pi \sqrt {\dfrac{I}{{M{B_{net}}}}} }}{{2\pi \sqrt {\dfrac{I}{{M{B_H}}}} }}\]
\[ \Rightarrow \dfrac{T}{{{T_0}}} = \sqrt {\dfrac{I}{{M{B_{net}}}} \times \dfrac{{M{B_H}}}{I}} \]
\[ \Rightarrow \dfrac{T}{{{T_0}}} = \sqrt {\dfrac{{{B_H}}}{{{B_{net}}}}} \]
\[ \Rightarrow \dfrac{T}{{{T_0}}} = \sqrt {\cos \theta } \] \[\left[ \begin{gathered}
{B_{net}} = \dfrac{{{B_H}}}{{\cos \theta }} \\
\cos \theta = \dfrac{{{B_H}}}{{{B_{net}}}} \\
\end{gathered} \right]\]
Squaring both sides
\[{\dfrac{T}{{{T_0}^2}}^2} = \cos \theta \]
\[ \Rightarrow {T^2} = {T_0}^2\cos \theta \]
Hence the relation between \[\operatorname{T} \] and \[{T_O}\] is
\[{T^2} = {T_0}^2\cos \theta \]
Therefore the answers is option (A).
Note: Magnetic field a neighbourhood vector field of a magnet , electric current or electric field changing , where magnetic fields like earth cause magnetic compasses and other permanent magnets to line up in the field direction.
Formula for time period is
\[ \Rightarrow T = 2\pi \sqrt {\dfrac{I}{{MB}}} \]
Where I is current , M is magnetic moment and B is magnetic field.
Complete step by step answer:
In the usual setting of deflection magnetometer, the field due to magnet \[\left( B \right)\] and horizontal component \[\left( {{B_H}} \right)\] of earth ‘s field are perpendicular to each other . Therefore the net field on the magnetic needle is \[\sqrt {{B^2} + {B_H}^2} \]
By tangent law ,\[B = {B_H}\tan \theta \]
\[{B_{net}} = \sqrt {{B^2} + {B_H}^2} \]
\[ \Rightarrow {B_{net}} = \sqrt {{B^2} + {B_H}^2} \]
\[ \Rightarrow {B_{net}} = \sqrt {{B_H}^2 + {B_H}^2{{\tan }^2}\theta } \]
Taking BH2 common
\[{B_{net}} = \sqrt {{B_H}^2(1 + {{\tan }^2}\theta )} \]
Since
\[{\sec ^2}\theta = 1 + {\tan ^2}\theta \]
\[\
\Rightarrow {B_{net}} = {B_H}\sqrt {{{\sec }^2}\theta } \\
\Rightarrow {B_{net}} = {B_H}\sec \theta \\
\Rightarrow {B_{net}} = B\dfrac{1}{{\cos \theta }} \\
\ \]
Now the time period with magnet is given by
\[T = 2\pi \sqrt {\dfrac{I}{{M{B_{net}}}}} \] \[ \to \]\[\left( 1 \right)\]
Again time period when magnet is removed ,
\[{T_0} = 2\pi \sqrt {\dfrac{I}{{M{B_H}}}} \] \[ \to \]\[\left( 2 \right)\]
Dividing \[\left( 1 \right)\]by \[\left( 2 \right)\] , we get
\[\dfrac{T}{{{T_0}}} = \dfrac{{2\pi \sqrt {\dfrac{I}{{M{B_{net}}}}} }}{{2\pi \sqrt {\dfrac{I}{{M{B_H}}}} }}\]
\[ \Rightarrow \dfrac{T}{{{T_0}}} = \sqrt {\dfrac{I}{{M{B_{net}}}} \times \dfrac{{M{B_H}}}{I}} \]
\[ \Rightarrow \dfrac{T}{{{T_0}}} = \sqrt {\dfrac{{{B_H}}}{{{B_{net}}}}} \]
\[ \Rightarrow \dfrac{T}{{{T_0}}} = \sqrt {\cos \theta } \] \[\left[ \begin{gathered}
{B_{net}} = \dfrac{{{B_H}}}{{\cos \theta }} \\
\cos \theta = \dfrac{{{B_H}}}{{{B_{net}}}} \\
\end{gathered} \right]\]
Squaring both sides
\[{\dfrac{T}{{{T_0}^2}}^2} = \cos \theta \]
\[ \Rightarrow {T^2} = {T_0}^2\cos \theta \]
Hence the relation between \[\operatorname{T} \] and \[{T_O}\] is
\[{T^2} = {T_0}^2\cos \theta \]
Therefore the answers is option (A).
Note: Magnetic field a neighbourhood vector field of a magnet , electric current or electric field changing , where magnetic fields like earth cause magnetic compasses and other permanent magnets to line up in the field direction.
Recently Updated Pages
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key
Geostationary Satellites and Geosynchronous Satellites for JEE
Complex Numbers - Important Concepts and Tips for JEE
JEE Main 2023 (February 1st Shift 2) Maths Question Paper with Answer Key
JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key
Inertial and Non-Inertial Frame of Reference for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
JEE Main Login 2045: Step-by-Step Instructions and Details
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Degree of Dissociation and Its Formula With Solved Example for JEE
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking