Answer
Verified
109.2k+ views
Hint: When a dielectric is present between the plates of a capacitor, it will modify the electric field that exists between the two plates of the capacitor. Charges will be induced in the dielectric such that it will produce an electric field opposing the original electric field.
Formula used:
-Charge in a dielectric: $Q' = Q\left[ {1 - \dfrac{1}{k}} \right]$ where $Q$ is the charge on the plates and \[k\] is the dielectric constant.
Complete step by step answer:
In the absence of a dielectric, a uniform electric field is present between the capacitor plates. However, when a dielectric is present, as mentioned in the hint, an electric field will be induced in it such that it will oppose the external electric field. This is due to the polarization of charges inside the dielectric material. Hence the charge induced in the dielectric will be due to the property of the dielectric. The magnitude of this charge is given as
$Q' = Q\left[ {1 - \dfrac{1}{k}} \right]$
Now the dielectric constant of any medium is greater than one while vacuum has a dielectric constant of 1. Hence the term inside the square bracket will always have a value less than 1.
So, the charge induced in the dielectric will always be less than the charge on the plates of the capacitor.
So, $Q' < Q$. Hence option (D) is correct.
Note: While the vacuum has a dielectric constant of 1, there is no matter in the vacuum to induce any charges, so again no charge will be induced in it. The charges in the dielectric medium will be removed if the capacitor plates do not have any charges either.
Formula used:
-Charge in a dielectric: $Q' = Q\left[ {1 - \dfrac{1}{k}} \right]$ where $Q$ is the charge on the plates and \[k\] is the dielectric constant.
Complete step by step answer:
In the absence of a dielectric, a uniform electric field is present between the capacitor plates. However, when a dielectric is present, as mentioned in the hint, an electric field will be induced in it such that it will oppose the external electric field. This is due to the polarization of charges inside the dielectric material. Hence the charge induced in the dielectric will be due to the property of the dielectric. The magnitude of this charge is given as
$Q' = Q\left[ {1 - \dfrac{1}{k}} \right]$
Now the dielectric constant of any medium is greater than one while vacuum has a dielectric constant of 1. Hence the term inside the square bracket will always have a value less than 1.
So, the charge induced in the dielectric will always be less than the charge on the plates of the capacitor.
So, $Q' < Q$. Hence option (D) is correct.
Note: While the vacuum has a dielectric constant of 1, there is no matter in the vacuum to induce any charges, so again no charge will be induced in it. The charges in the dielectric medium will be removed if the capacitor plates do not have any charges either.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main