Answer
Verified
110.4k+ views
Hint: Such a system must obey the first law of thermodynamics. Use the equation of the first law of thermodynamics to find the work done by the system.
Formula used: In this solution we will be using the following formulae;
\[\Delta U = \Delta Q - W\] where \[\Delta U\] is the change in internal energy of the system, \[\Delta Q\] is the change in thermal energy of (or the heat absorbed by) the system, and \[W\] is the work done by the system.
\[\Delta Q = m{c_p}\Delta T\] where \[m\]is the mass of the gas, \[{c_p}\]is the specific heat at constant pressure, and \[\Delta T\] is the change in temperature of the system.
\[\Delta U = m{c_v}\Delta T\] where \[{c_v}\] is the specific capacity at constant volume.
Complete Step-by-Step Solution:
When the gas is heated, the change in thermal energy would be given by
\[\Delta Q = m{c_p}\Delta T\]where \[m\] is the mass of the gas, \[{c_p}\] is the specific heat at constant pressure, and \[\Delta T\] is the change in temperature of the system.
At the same time, the change in internal energy is given by
\[\Delta U = m{c_v}\Delta T\] where \[{c_v}\] is the specific capacity at constant volume.
Now, from the first law of thermodynamics given as
\[\Delta U = \Delta Q - W\] where \[W\] is the work done by the system, we can find the work done as
\[W = \Delta Q - \Delta U\]
\[\dfrac{W}{{\Delta Q}} = \dfrac{{\Delta Q - \Delta U}}{{\Delta Q}} = 1 - \dfrac{{\Delta U}}{{\Delta Q}}\]
Replacing the known expressions into above equation, we have
\[\dfrac{W}{{\Delta Q}} = 1 - \dfrac{{m{c_v}\Delta T}}{{m{c_p}\Delta T}} = 1 - \dfrac{{{c_v}}}{{{c_p}}}\]
The ratio \[\dfrac{{{c_p}}}{{{c_v}}}\] is usually given the constant \[\gamma \]
Hence,
\[\dfrac{W}{{\Delta Q}} = 1 - \dfrac{1}{\gamma }\]
Thus, the correct option is B
Note: To avoid confusions, the thermodynamic equation can be written as
\[\Delta U = \Delta Q + W\]
However, in this format, the definition of \[W\] is the work done on (not by) the system. Hence, it is negative in value when work is done by the system
Formula used: In this solution we will be using the following formulae;
\[\Delta U = \Delta Q - W\] where \[\Delta U\] is the change in internal energy of the system, \[\Delta Q\] is the change in thermal energy of (or the heat absorbed by) the system, and \[W\] is the work done by the system.
\[\Delta Q = m{c_p}\Delta T\] where \[m\]is the mass of the gas, \[{c_p}\]is the specific heat at constant pressure, and \[\Delta T\] is the change in temperature of the system.
\[\Delta U = m{c_v}\Delta T\] where \[{c_v}\] is the specific capacity at constant volume.
Complete Step-by-Step Solution:
When the gas is heated, the change in thermal energy would be given by
\[\Delta Q = m{c_p}\Delta T\]where \[m\] is the mass of the gas, \[{c_p}\] is the specific heat at constant pressure, and \[\Delta T\] is the change in temperature of the system.
At the same time, the change in internal energy is given by
\[\Delta U = m{c_v}\Delta T\] where \[{c_v}\] is the specific capacity at constant volume.
Now, from the first law of thermodynamics given as
\[\Delta U = \Delta Q - W\] where \[W\] is the work done by the system, we can find the work done as
\[W = \Delta Q - \Delta U\]
\[\dfrac{W}{{\Delta Q}} = \dfrac{{\Delta Q - \Delta U}}{{\Delta Q}} = 1 - \dfrac{{\Delta U}}{{\Delta Q}}\]
Replacing the known expressions into above equation, we have
\[\dfrac{W}{{\Delta Q}} = 1 - \dfrac{{m{c_v}\Delta T}}{{m{c_p}\Delta T}} = 1 - \dfrac{{{c_v}}}{{{c_p}}}\]
The ratio \[\dfrac{{{c_p}}}{{{c_v}}}\] is usually given the constant \[\gamma \]
Hence,
\[\dfrac{W}{{\Delta Q}} = 1 - \dfrac{1}{\gamma }\]
Thus, the correct option is B
Note: To avoid confusions, the thermodynamic equation can be written as
\[\Delta U = \Delta Q + W\]
However, in this format, the definition of \[W\] is the work done on (not by) the system. Hence, it is negative in value when work is done by the system
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main