Answer
Verified
112.5k+ views
Hint: The dot is invisible, due to the phenomenon of total internal reflection. Total internal reflection takes place when the angle of incidence exceeds the critical angle.
Complete step by step answer:
Let us understand the concept of total internal Reflection from the following definitions:
The phenomenon of reflection of total light when the light travelling in a denser medium strikes the interface separating the denser and the rarer medium at an angle greater than the critical angle, this is referred to as total internal reflection.
Now, we come across a term, critical angle. This critical angle is the angle of incidence in the denser medium, for which the angle of refraction in the rarer medium becomes\[{90^o}\] .
Now coming to the question, it is given that:
Height of the jar=h
Refractive index of the transparent medium is =\[\mu \]
We need to find the diameter of the ring, which when placed symmetrically on the top surface, the dot O at the bottom surface becomes invisible.
In order to make the dot invisible, rays marked OA and OB must suffer total internal Reflection.
Let \[\angle AOC\] be the angle of incidence marked as I in the diagram.
In\[\Delta AOC\] :
\[\tan i = \dfrac{{AC}}{{OC}} = \dfrac{{d/2}}{h}\]
Now, we know, for total internal reflection to occur, \[\angle i \geqslant \angle c\]
So, \[\sin i = \sin c\]
Applying Snell’s law:
We know,
\[\dfrac{{\sin i}}{{\sin r}} = \mu \]
Where, r= angle of refraction, which is \[{90^o}\] .
We know, if refractive index of media a with respect to b (air to water) is denoted by\[\mu \], then refractive index of b with respect to a ( water to air) is denoted by \[\dfrac{1}{\mu }\]
Therefore, the previous equation can also be written as:
\[\sin i = \dfrac{1}{\mu }\]
Drawing the triangle from the above equation:
\[\tan i = \dfrac{1}{{\sqrt {{\mu ^2} - 1} }}\]
Equating values of\[\tan i\] :
\[\dfrac{d}{{2h}} = \dfrac{1}{{\sqrt {{\mu ^2} - 1} }}\]
Solving the equation, we get:
\[d = \dfrac{{2h}}{{\sqrt {{\mu ^2} - 1} }}\]
This is the required value of diameter.
Note: Total internal reflection takes place when light ray travels from optically denser medium to the rarer medium. Here, (water-air surface). The rarer medium is the medium, in which the speed of light is more whereas the denser medium is the one where the speed of light is less.
Complete step by step answer:
Let us understand the concept of total internal Reflection from the following definitions:
The phenomenon of reflection of total light when the light travelling in a denser medium strikes the interface separating the denser and the rarer medium at an angle greater than the critical angle, this is referred to as total internal reflection.
Now, we come across a term, critical angle. This critical angle is the angle of incidence in the denser medium, for which the angle of refraction in the rarer medium becomes\[{90^o}\] .
Now coming to the question, it is given that:
Height of the jar=h
Refractive index of the transparent medium is =\[\mu \]
We need to find the diameter of the ring, which when placed symmetrically on the top surface, the dot O at the bottom surface becomes invisible.
In order to make the dot invisible, rays marked OA and OB must suffer total internal Reflection.
Let \[\angle AOC\] be the angle of incidence marked as I in the diagram.
In\[\Delta AOC\] :
\[\tan i = \dfrac{{AC}}{{OC}} = \dfrac{{d/2}}{h}\]
Now, we know, for total internal reflection to occur, \[\angle i \geqslant \angle c\]
So, \[\sin i = \sin c\]
Applying Snell’s law:
We know,
\[\dfrac{{\sin i}}{{\sin r}} = \mu \]
Where, r= angle of refraction, which is \[{90^o}\] .
We know, if refractive index of media a with respect to b (air to water) is denoted by\[\mu \], then refractive index of b with respect to a ( water to air) is denoted by \[\dfrac{1}{\mu }\]
Therefore, the previous equation can also be written as:
\[\sin i = \dfrac{1}{\mu }\]
Drawing the triangle from the above equation:
\[\tan i = \dfrac{1}{{\sqrt {{\mu ^2} - 1} }}\]
Equating values of\[\tan i\] :
\[\dfrac{d}{{2h}} = \dfrac{1}{{\sqrt {{\mu ^2} - 1} }}\]
Solving the equation, we get:
\[d = \dfrac{{2h}}{{\sqrt {{\mu ^2} - 1} }}\]
This is the required value of diameter.
Note: Total internal reflection takes place when light ray travels from optically denser medium to the rarer medium. Here, (water-air surface). The rarer medium is the medium, in which the speed of light is more whereas the denser medium is the one where the speed of light is less.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking