![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
A lamina is made by removing a small disc of 2R diameter from a bigger disc of uniform mass density and radius 2R, as shown in figure. The moment of inertia of this lamina about the axis passing through O and P is ${I_o}$ and${I_p}$, respectively. Both these axes are perpendicular to the plane of the lamina. The ratio \[\dfrac{{{I_p}}}{{{I_o}}}\] to the nearest integer is:
![](https://www.vedantu.com/question-sets/c47fbe46-0d75-460e-a156-73d23a8c58e31887581774184299512.png)
A) $\dfrac{{13}}{{37}}$
B) $\dfrac{{37}}{{13}}$
C) $\dfrac{{73}}{{31}}$
D) $\dfrac{8}{{13}}$
Answer
413.4k+ views
Hint: First we found the moment of inertia about O and also found out the moment of inertia about P by subtracting the moment of inertia of cavity from the total part.
Complete step by step solution:
![](https://www.vedantu.com/question-sets/205ee1bf-b6a9-4caa-bd36-f89ef0b6d72e7261099650010160636.png)
When we rotate this about O, then make a circle of radius 2R. Then first we find the moment of inertia of circle of radius 2Rand subtract moment of inertia of circle of radius R.
\[{I_0} = \dfrac{1}{2}\left( {4m} \right)\left( {2{R^2}} \right) - \left[ {\dfrac{1}{2}m{R^2} + m{R^2}} \right]\]
\[\Rightarrow 8m{R^2} - \dfrac{3}{2}m{R^2}\]
\[\Rightarrow \dfrac{{13}}{2}m{R^2}\]
![](https://www.vedantu.com/question-sets/4e1ab917-eda5-4728-b2ac-f2f5ae8806dc8355694579810670230.png)
\[\Rightarrow {I_P} = \left[ {\dfrac{1}{2}\left( {4m} \right){{\left( {2R} \right)}^2} + 4m{{\left( {2R} \right)}^2}} \right] - \left[ {\dfrac{1}{2}m{R^2} + m{{\left( {\sqrt 5 R} \right)}^2}} \right]\]
\[\Rightarrow \left[ {\dfrac{1}{2} \times 4m \times 4{R^2} + 4m \times 4{R^2}} \right] - \left[ {\dfrac{1}{2}m{R^2} + 5m{R^2}} \right]\]
\[\Rightarrow \left[ {8m{R^2} + 16m{R^2}} \right] - \left[ {\dfrac{{11}}{2}m{R^2}} \right]\]
\[\Rightarrow 24m{R^2} - \dfrac{{11}}{2}m{R^2}\]
\[\Rightarrow m{R^2}\left[ {24 - \dfrac{{11}}{2}} \right]\]
\[\Rightarrow m{R^2}\left[ {\dfrac{{48 - 11}}{2}} \right]\]
\[\Rightarrow m{R^2}\left[ {\dfrac{{37}}{2}} \right]\]
\[ \Rightarrow \dfrac{{37}}{2}m{R^2}\]
Then the ratio of moment of inertia around P, to moment of inertia about O.
\[\Rightarrow \dfrac{{{I_p}}}{{{I_0}}} = \dfrac{{\dfrac{{37}}{2}}}{{\dfrac{{13}}{2}}} = \dfrac{{37}}{{13}}\]
\[\Rightarrow \boxed{\dfrac{{{I_p}}}{{{I_0}}} = \dfrac{{37}}{{13}}}\]
Note: When we find out the moment inertia around P, then we take a small sphere of radius R, but we should take the sphere radius of \[\sqrt 5 R\].
Complete step by step solution:
![](https://www.vedantu.com/question-sets/205ee1bf-b6a9-4caa-bd36-f89ef0b6d72e7261099650010160636.png)
When we rotate this about O, then make a circle of radius 2R. Then first we find the moment of inertia of circle of radius 2Rand subtract moment of inertia of circle of radius R.
\[{I_0} = \dfrac{1}{2}\left( {4m} \right)\left( {2{R^2}} \right) - \left[ {\dfrac{1}{2}m{R^2} + m{R^2}} \right]\]
\[\Rightarrow 8m{R^2} - \dfrac{3}{2}m{R^2}\]
\[\Rightarrow \dfrac{{13}}{2}m{R^2}\]
![](https://www.vedantu.com/question-sets/4e1ab917-eda5-4728-b2ac-f2f5ae8806dc8355694579810670230.png)
\[\Rightarrow {I_P} = \left[ {\dfrac{1}{2}\left( {4m} \right){{\left( {2R} \right)}^2} + 4m{{\left( {2R} \right)}^2}} \right] - \left[ {\dfrac{1}{2}m{R^2} + m{{\left( {\sqrt 5 R} \right)}^2}} \right]\]
\[\Rightarrow \left[ {\dfrac{1}{2} \times 4m \times 4{R^2} + 4m \times 4{R^2}} \right] - \left[ {\dfrac{1}{2}m{R^2} + 5m{R^2}} \right]\]
\[\Rightarrow \left[ {8m{R^2} + 16m{R^2}} \right] - \left[ {\dfrac{{11}}{2}m{R^2}} \right]\]
\[\Rightarrow 24m{R^2} - \dfrac{{11}}{2}m{R^2}\]
\[\Rightarrow m{R^2}\left[ {24 - \dfrac{{11}}{2}} \right]\]
\[\Rightarrow m{R^2}\left[ {\dfrac{{48 - 11}}{2}} \right]\]
\[\Rightarrow m{R^2}\left[ {\dfrac{{37}}{2}} \right]\]
\[ \Rightarrow \dfrac{{37}}{2}m{R^2}\]
Then the ratio of moment of inertia around P, to moment of inertia about O.
\[\Rightarrow \dfrac{{{I_p}}}{{{I_0}}} = \dfrac{{\dfrac{{37}}{2}}}{{\dfrac{{13}}{2}}} = \dfrac{{37}}{{13}}\]
\[\Rightarrow \boxed{\dfrac{{{I_p}}}{{{I_0}}} = \dfrac{{37}}{{13}}}\]
Note: When we find out the moment inertia around P, then we take a small sphere of radius R, but we should take the sphere radius of \[\sqrt 5 R\].
Recently Updated Pages
JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Classification of Elements and Periodicity in Properties Chapter For JEE Main Chemistry
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 (January 24th Shift 2) Chemistry Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Class 11 JEE Main Physics Mock Test 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
![arrow-right](/cdn/images/seo-templates/arrow-right.png)