A liquid is placed in a hollow prism of angle $60^\circ $. If the angle of the minimum deviation is $30^\circ $, what is the refractive index of the liquid?
A) 1.41
B) 1.50
C) 1.65
D) 1.95
Answer
Verified
116.4k+ views
Hint: There two ways through which maximum deviation can be achieved one is when the angle is at 90 degrees. This is also known as the grazing incidence and another way is when the emergent light ray after leaving the prism grazes along the surface of the prism.
Complete step by step solution:
Step 1:
Find the refractive index of the liquid:
The condition of maximum deviation is given as:
$i = e;$ …(i = incident ray; e = emergent ray)
${\delta _{\min }} = 2i - A$;
Here:
${\delta _{\min }}$= Minimum Deviation;
i = Incident Angle;
A = Angle of hollow prism;
The formula for refractive index is given as:
$\mu = \dfrac{{\sin \left( {\dfrac{{{\delta _{\min }} + A}}{2}} \right)}}{{\sin \left( {\dfrac{A}{2}} \right)}}$;
Here:
$\mu $= Refractive Index.
${\delta _m}$= Minimum deviation.
$A$= Angle of hollow prism.
Here we have been given ${\delta _{\min }} = 30^\circ $; $A = 60^\circ $.
Step 2:
Put in the value of minimum deviation and angle of prism in the above equation and solve:
$ \Rightarrow \mu = \dfrac{{\sin \left( {\dfrac{{30 + 60}}{2}} \right)}}{{\sin \left( {\dfrac{{60}}{2}} \right)}};$
$ \Rightarrow \mu = \dfrac{{\sin {{45}^\circ }}}{{\sin {{30}^\circ }}};$
Put in the value and solve:
$ \Rightarrow \mu = \dfrac{{\dfrac{1}{{\sqrt 2 }}}}{{\dfrac{1}{2}}};$
Do the needed calculation:
$ \Rightarrow \mu = \sqrt 2 ;$
The refractive index of the liquid is:
$ \Rightarrow \mu = 1.41;$
Final Answer: Option “A” is correct. The refractive index of the liquid is 1.41.
Note: We have been given the minimum deviation and the angle of the prism. Write the formula for the refractive index and put in the given value in the formula. The deviation reduces as the incidence angle increases until the deviation gets minimum. There is an increase in the angle of deviation as the angle of incidence increases.
Complete step by step solution:
Step 1:
Find the refractive index of the liquid:
The condition of maximum deviation is given as:
$i = e;$ …(i = incident ray; e = emergent ray)
${\delta _{\min }} = 2i - A$;
Here:
${\delta _{\min }}$= Minimum Deviation;
i = Incident Angle;
A = Angle of hollow prism;
The formula for refractive index is given as:
$\mu = \dfrac{{\sin \left( {\dfrac{{{\delta _{\min }} + A}}{2}} \right)}}{{\sin \left( {\dfrac{A}{2}} \right)}}$;
Here:
$\mu $= Refractive Index.
${\delta _m}$= Minimum deviation.
$A$= Angle of hollow prism.
Here we have been given ${\delta _{\min }} = 30^\circ $; $A = 60^\circ $.
Step 2:
Put in the value of minimum deviation and angle of prism in the above equation and solve:
$ \Rightarrow \mu = \dfrac{{\sin \left( {\dfrac{{30 + 60}}{2}} \right)}}{{\sin \left( {\dfrac{{60}}{2}} \right)}};$
$ \Rightarrow \mu = \dfrac{{\sin {{45}^\circ }}}{{\sin {{30}^\circ }}};$
Put in the value and solve:
$ \Rightarrow \mu = \dfrac{{\dfrac{1}{{\sqrt 2 }}}}{{\dfrac{1}{2}}};$
Do the needed calculation:
$ \Rightarrow \mu = \sqrt 2 ;$
The refractive index of the liquid is:
$ \Rightarrow \mu = 1.41;$
Final Answer: Option “A” is correct. The refractive index of the liquid is 1.41.
Note: We have been given the minimum deviation and the angle of the prism. Write the formula for the refractive index and put in the given value in the formula. The deviation reduces as the incidence angle increases until the deviation gets minimum. There is an increase in the angle of deviation as the angle of incidence increases.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
Young's Double Slit Experiment Step by Step Derivation
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Charging and Discharging of Capacitor
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Physics Average Value and RMS Value JEE Main 2025