Answer
Verified
99.9k+ views
Hint: The invariant physical quantities are the quantities which remain constant throughout the time interval of time. As the speed and displacement in the simple harmonic oscillation changes over the time, so kinetic energy and the potential energy changes.
Formula used:
\[v = \omega \sqrt {{A^2} - {x^2}} \]
where v is the speed of the particle at any displacement x from the mean position.
\[KE = \dfrac{1}{2}m{v^2}\]
where KE is the kinetic energy of the particle of mass m and speed v.
Complete step by step solution:
When a longitudinal wave propagates through a medium, the particles of the medium execute simple harmonic oscillations about their mean positions. The equation of the displacement is given as,
\[x = A\sin \left( {\omega t} \right)\]
Here x is the displacement of the particle at any time t. A is the maximum displacement of the particle from the mean position and \[\omega \] is the angular frequency of the simple harmonic oscillation.
The speed of the particle at any displacement x from the mean position is,
\[v = \omega \sqrt {{A^2} - {x^2}} \]
If the mass of the particle is m, then kinetic energy is,
\[KE = \dfrac{1}{2}m{v^2}\]
\[\Rightarrow KE = \dfrac{1}{2}m{\omega ^2}\left( {{A^2} - {x^2}} \right) \\ \]
The force constant of is K then \[K = m{\omega ^2}\]
Then the potential energy is,
\[PE = \dfrac{{K{x^2}}}{2} \\ \]
\[\Rightarrow PE = \dfrac{{m{\omega ^2}{x^2}}}{2}\]
The sum of the kinetic energy and potential energy of the particle is the total mechanical energy,
\[T = KE + PE\]
\[\Rightarrow T = \dfrac{1}{2}m{\omega ^2}\left( {{A^2} - {x^2}} \right) + \dfrac{1}{2}m{\omega ^2}{x^2} \\ \]
\[\therefore T = \dfrac{1}{2}m{\omega ^2}{A^2}\]
So, the sum of the kinetic energy and the potential energy of the particle in simple harmonic motion is constant, i.e. invariant. Hence, these oscillations of a particle are characterised by an invariant which is the sum of the kinetic energy and the potential energy.
Therefore, the correct option is C.
Note: As the particle moves away from the mean position the speed decreases and displacement increases. So, the kinetic energy decreases and potential energy increases. But at any displacement the sum of the kinetic energy and the potential energy is constant.
Formula used:
\[v = \omega \sqrt {{A^2} - {x^2}} \]
where v is the speed of the particle at any displacement x from the mean position.
\[KE = \dfrac{1}{2}m{v^2}\]
where KE is the kinetic energy of the particle of mass m and speed v.
Complete step by step solution:
When a longitudinal wave propagates through a medium, the particles of the medium execute simple harmonic oscillations about their mean positions. The equation of the displacement is given as,
\[x = A\sin \left( {\omega t} \right)\]
Here x is the displacement of the particle at any time t. A is the maximum displacement of the particle from the mean position and \[\omega \] is the angular frequency of the simple harmonic oscillation.
The speed of the particle at any displacement x from the mean position is,
\[v = \omega \sqrt {{A^2} - {x^2}} \]
If the mass of the particle is m, then kinetic energy is,
\[KE = \dfrac{1}{2}m{v^2}\]
\[\Rightarrow KE = \dfrac{1}{2}m{\omega ^2}\left( {{A^2} - {x^2}} \right) \\ \]
The force constant of is K then \[K = m{\omega ^2}\]
Then the potential energy is,
\[PE = \dfrac{{K{x^2}}}{2} \\ \]
\[\Rightarrow PE = \dfrac{{m{\omega ^2}{x^2}}}{2}\]
The sum of the kinetic energy and potential energy of the particle is the total mechanical energy,
\[T = KE + PE\]
\[\Rightarrow T = \dfrac{1}{2}m{\omega ^2}\left( {{A^2} - {x^2}} \right) + \dfrac{1}{2}m{\omega ^2}{x^2} \\ \]
\[\therefore T = \dfrac{1}{2}m{\omega ^2}{A^2}\]
So, the sum of the kinetic energy and the potential energy of the particle in simple harmonic motion is constant, i.e. invariant. Hence, these oscillations of a particle are characterised by an invariant which is the sum of the kinetic energy and the potential energy.
Therefore, the correct option is C.
Note: As the particle moves away from the mean position the speed decreases and displacement increases. So, the kinetic energy decreases and potential energy increases. But at any displacement the sum of the kinetic energy and the potential energy is constant.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main