Answer
Verified
110.7k+ views
Hint: The invariant physical quantities are the quantities which remain constant throughout the time interval of time. As the speed and displacement in the simple harmonic oscillation changes over the time, so kinetic energy and the potential energy changes.
Formula used:
\[v = \omega \sqrt {{A^2} - {x^2}} \]
where v is the speed of the particle at any displacement x from the mean position.
\[KE = \dfrac{1}{2}m{v^2}\]
where KE is the kinetic energy of the particle of mass m and speed v.
Complete step by step solution:
When a longitudinal wave propagates through a medium, the particles of the medium execute simple harmonic oscillations about their mean positions. The equation of the displacement is given as,
\[x = A\sin \left( {\omega t} \right)\]
Here x is the displacement of the particle at any time t. A is the maximum displacement of the particle from the mean position and \[\omega \] is the angular frequency of the simple harmonic oscillation.
The speed of the particle at any displacement x from the mean position is,
\[v = \omega \sqrt {{A^2} - {x^2}} \]
If the mass of the particle is m, then kinetic energy is,
\[KE = \dfrac{1}{2}m{v^2}\]
\[\Rightarrow KE = \dfrac{1}{2}m{\omega ^2}\left( {{A^2} - {x^2}} \right) \\ \]
The force constant of is K then \[K = m{\omega ^2}\]
Then the potential energy is,
\[PE = \dfrac{{K{x^2}}}{2} \\ \]
\[\Rightarrow PE = \dfrac{{m{\omega ^2}{x^2}}}{2}\]
The sum of the kinetic energy and potential energy of the particle is the total mechanical energy,
\[T = KE + PE\]
\[\Rightarrow T = \dfrac{1}{2}m{\omega ^2}\left( {{A^2} - {x^2}} \right) + \dfrac{1}{2}m{\omega ^2}{x^2} \\ \]
\[\therefore T = \dfrac{1}{2}m{\omega ^2}{A^2}\]
So, the sum of the kinetic energy and the potential energy of the particle in simple harmonic motion is constant, i.e. invariant. Hence, these oscillations of a particle are characterised by an invariant which is the sum of the kinetic energy and the potential energy.
Therefore, the correct option is C.
Note: As the particle moves away from the mean position the speed decreases and displacement increases. So, the kinetic energy decreases and potential energy increases. But at any displacement the sum of the kinetic energy and the potential energy is constant.
Formula used:
\[v = \omega \sqrt {{A^2} - {x^2}} \]
where v is the speed of the particle at any displacement x from the mean position.
\[KE = \dfrac{1}{2}m{v^2}\]
where KE is the kinetic energy of the particle of mass m and speed v.
Complete step by step solution:
When a longitudinal wave propagates through a medium, the particles of the medium execute simple harmonic oscillations about their mean positions. The equation of the displacement is given as,
\[x = A\sin \left( {\omega t} \right)\]
Here x is the displacement of the particle at any time t. A is the maximum displacement of the particle from the mean position and \[\omega \] is the angular frequency of the simple harmonic oscillation.
The speed of the particle at any displacement x from the mean position is,
\[v = \omega \sqrt {{A^2} - {x^2}} \]
If the mass of the particle is m, then kinetic energy is,
\[KE = \dfrac{1}{2}m{v^2}\]
\[\Rightarrow KE = \dfrac{1}{2}m{\omega ^2}\left( {{A^2} - {x^2}} \right) \\ \]
The force constant of is K then \[K = m{\omega ^2}\]
Then the potential energy is,
\[PE = \dfrac{{K{x^2}}}{2} \\ \]
\[\Rightarrow PE = \dfrac{{m{\omega ^2}{x^2}}}{2}\]
The sum of the kinetic energy and potential energy of the particle is the total mechanical energy,
\[T = KE + PE\]
\[\Rightarrow T = \dfrac{1}{2}m{\omega ^2}\left( {{A^2} - {x^2}} \right) + \dfrac{1}{2}m{\omega ^2}{x^2} \\ \]
\[\therefore T = \dfrac{1}{2}m{\omega ^2}{A^2}\]
So, the sum of the kinetic energy and the potential energy of the particle in simple harmonic motion is constant, i.e. invariant. Hence, these oscillations of a particle are characterised by an invariant which is the sum of the kinetic energy and the potential energy.
Therefore, the correct option is C.
Note: As the particle moves away from the mean position the speed decreases and displacement increases. So, the kinetic energy decreases and potential energy increases. But at any displacement the sum of the kinetic energy and the potential energy is constant.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main