Answer
Verified
99.9k+ views
Hint: When a magnet is placed in a magnetic field, it experiences a torque. If a magnet is rotated against the torque, work has to be done. Here the magnet is rotated through an angle ${{360}^{o}}$ , so by putting this angle value in the respective equation we can calculate the value of work done.
Formula used:
The total work done $W$through rotating this magnet from an angle ${{\theta }_{1}}\,\,to\,\,{{\theta }_{2}}$ is given by,
$W=MH(\cos {{\theta }_{1}}-\cos {{\theta }_{2}})$
Where,
$M=$Magnetic moment
$H=$Magnetic field
Complete answer:
When a magnet with the magnetic moment $\overrightarrow{M}$, is placed in a magnetic field $\overrightarrow{H}$, it experiences a torque,$\overrightarrow{\tau }=\overrightarrow{M}\times \overrightarrow{H}$
Or,$\tau =MH\sin \theta $ [Since $\theta =$angle] …….(i)
Now, this torque tends to align parallel to the direction of the magnetic field but if this magnet is rotated against the torque, work is to be done.
Thus, work done,$W=\tau d\theta $
Putting the value $\tau $from equation (i) we get,
$W=MH\sin \theta \,\,d\theta $
The work done in turning the magnetic dipole through a small angle is,
$dW=\tau d\theta $
If the magnet is rotated from an angle ${{\theta }_{1}}\,to\,\,{{\theta }_{2}}$,
Total work done,
$\int{dW}=\int\limits_{{{\theta }_{1}}}^{{{\theta }_{2}}}{MH\sin \theta \,d\theta }$
Or,
$W=MH(-\cos \theta )_{{{\theta }_{1}}}^{{{\theta }_{2}}}$
Or,
$W=MH(\cos {{\theta }_{1}}-\cos {{\theta }_{2}})$ ……..(ii)
In this problem ${{\theta }_{1}}={{0}^{o}}$and ${{\theta }_{2}}={{360}^{o}}$. Putting these values in equation (ii),
$\therefore W=MH(\cos {{0}^{o}}-\cos {{360}^{o}})$
Or,$W=MH(1-1)=0$
Therefore work done is zero when the magnet is rotated through an angle ${{360}^{o}}$ in a magnetic field.
Thus, option (A) is correct.
Note: Torque is an influence that causes a change in the rotational motion of any object. To make any object about an axis by imparting torque on it. Generally, torque is a vector quantity which means it has both magnitude and direction. The S.I unit of torque is $N.m$or $kg\,{{m}^{2}}{{\sec }^{-2}}$.
Formula used:
The total work done $W$through rotating this magnet from an angle ${{\theta }_{1}}\,\,to\,\,{{\theta }_{2}}$ is given by,
$W=MH(\cos {{\theta }_{1}}-\cos {{\theta }_{2}})$
Where,
$M=$Magnetic moment
$H=$Magnetic field
Complete answer:
When a magnet with the magnetic moment $\overrightarrow{M}$, is placed in a magnetic field $\overrightarrow{H}$, it experiences a torque,$\overrightarrow{\tau }=\overrightarrow{M}\times \overrightarrow{H}$
Or,$\tau =MH\sin \theta $ [Since $\theta =$angle] …….(i)
Now, this torque tends to align parallel to the direction of the magnetic field but if this magnet is rotated against the torque, work is to be done.
Thus, work done,$W=\tau d\theta $
Putting the value $\tau $from equation (i) we get,
$W=MH\sin \theta \,\,d\theta $
The work done in turning the magnetic dipole through a small angle is,
$dW=\tau d\theta $
If the magnet is rotated from an angle ${{\theta }_{1}}\,to\,\,{{\theta }_{2}}$,
Total work done,
$\int{dW}=\int\limits_{{{\theta }_{1}}}^{{{\theta }_{2}}}{MH\sin \theta \,d\theta }$
Or,
$W=MH(-\cos \theta )_{{{\theta }_{1}}}^{{{\theta }_{2}}}$
Or,
$W=MH(\cos {{\theta }_{1}}-\cos {{\theta }_{2}})$ ……..(ii)
In this problem ${{\theta }_{1}}={{0}^{o}}$and ${{\theta }_{2}}={{360}^{o}}$. Putting these values in equation (ii),
$\therefore W=MH(\cos {{0}^{o}}-\cos {{360}^{o}})$
Or,$W=MH(1-1)=0$
Therefore work done is zero when the magnet is rotated through an angle ${{360}^{o}}$ in a magnetic field.
Thus, option (A) is correct.
Note: Torque is an influence that causes a change in the rotational motion of any object. To make any object about an axis by imparting torque on it. Generally, torque is a vector quantity which means it has both magnitude and direction. The S.I unit of torque is $N.m$or $kg\,{{m}^{2}}{{\sec }^{-2}}$.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main