![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
A magnet of magnetic moment $M$ is rotated through ${{360}^{o}}$ in a magnetic field $H$. Work done will be
A.$0$
B.$2\,MH$
C.$MH$
D.$\pi MH$
Answer
125.1k+ views
Hint: When a magnet is placed in a magnetic field, it experiences a torque. If a magnet is rotated against the torque, work has to be done. Here the magnet is rotated through an angle ${{360}^{o}}$ , so by putting this angle value in the respective equation we can calculate the value of work done.
Formula used:
The total work done $W$through rotating this magnet from an angle ${{\theta }_{1}}\,\,to\,\,{{\theta }_{2}}$ is given by,
$W=MH(\cos {{\theta }_{1}}-\cos {{\theta }_{2}})$
Where,
$M=$Magnetic moment
$H=$Magnetic field
Complete answer:
When a magnet with the magnetic moment $\overrightarrow{M}$, is placed in a magnetic field $\overrightarrow{H}$, it experiences a torque,$\overrightarrow{\tau }=\overrightarrow{M}\times \overrightarrow{H}$
Or,$\tau =MH\sin \theta $ [Since $\theta =$angle] …….(i)
Now, this torque tends to align parallel to the direction of the magnetic field but if this magnet is rotated against the torque, work is to be done.
Thus, work done,$W=\tau d\theta $
Putting the value $\tau $from equation (i) we get,
$W=MH\sin \theta \,\,d\theta $
The work done in turning the magnetic dipole through a small angle is,
$dW=\tau d\theta $
If the magnet is rotated from an angle ${{\theta }_{1}}\,to\,\,{{\theta }_{2}}$,
Total work done,
$\int{dW}=\int\limits_{{{\theta }_{1}}}^{{{\theta }_{2}}}{MH\sin \theta \,d\theta }$
Or,
$W=MH(-\cos \theta )_{{{\theta }_{1}}}^{{{\theta }_{2}}}$
Or,
$W=MH(\cos {{\theta }_{1}}-\cos {{\theta }_{2}})$ ……..(ii)
In this problem ${{\theta }_{1}}={{0}^{o}}$and ${{\theta }_{2}}={{360}^{o}}$. Putting these values in equation (ii),
$\therefore W=MH(\cos {{0}^{o}}-\cos {{360}^{o}})$
Or,$W=MH(1-1)=0$
Therefore work done is zero when the magnet is rotated through an angle ${{360}^{o}}$ in a magnetic field.
Thus, option (A) is correct.
Note: Torque is an influence that causes a change in the rotational motion of any object. To make any object about an axis by imparting torque on it. Generally, torque is a vector quantity which means it has both magnitude and direction. The S.I unit of torque is $N.m$or $kg\,{{m}^{2}}{{\sec }^{-2}}$.
Formula used:
The total work done $W$through rotating this magnet from an angle ${{\theta }_{1}}\,\,to\,\,{{\theta }_{2}}$ is given by,
$W=MH(\cos {{\theta }_{1}}-\cos {{\theta }_{2}})$
Where,
$M=$Magnetic moment
$H=$Magnetic field
Complete answer:
When a magnet with the magnetic moment $\overrightarrow{M}$, is placed in a magnetic field $\overrightarrow{H}$, it experiences a torque,$\overrightarrow{\tau }=\overrightarrow{M}\times \overrightarrow{H}$
Or,$\tau =MH\sin \theta $ [Since $\theta =$angle] …….(i)
Now, this torque tends to align parallel to the direction of the magnetic field but if this magnet is rotated against the torque, work is to be done.
Thus, work done,$W=\tau d\theta $
Putting the value $\tau $from equation (i) we get,
$W=MH\sin \theta \,\,d\theta $
The work done in turning the magnetic dipole through a small angle is,
$dW=\tau d\theta $
If the magnet is rotated from an angle ${{\theta }_{1}}\,to\,\,{{\theta }_{2}}$,
Total work done,
$\int{dW}=\int\limits_{{{\theta }_{1}}}^{{{\theta }_{2}}}{MH\sin \theta \,d\theta }$
Or,
$W=MH(-\cos \theta )_{{{\theta }_{1}}}^{{{\theta }_{2}}}$
Or,
$W=MH(\cos {{\theta }_{1}}-\cos {{\theta }_{2}})$ ……..(ii)
In this problem ${{\theta }_{1}}={{0}^{o}}$and ${{\theta }_{2}}={{360}^{o}}$. Putting these values in equation (ii),
$\therefore W=MH(\cos {{0}^{o}}-\cos {{360}^{o}})$
Or,$W=MH(1-1)=0$
Therefore work done is zero when the magnet is rotated through an angle ${{360}^{o}}$ in a magnetic field.
Thus, option (A) is correct.
Note: Torque is an influence that causes a change in the rotational motion of any object. To make any object about an axis by imparting torque on it. Generally, torque is a vector quantity which means it has both magnitude and direction. The S.I unit of torque is $N.m$or $kg\,{{m}^{2}}{{\sec }^{-2}}$.
Recently Updated Pages
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Atomic Structure and Chemical Bonding important Concepts and Tips
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The formula of the kinetic mass of a photon is Where class 12 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Login 2045: Step-by-Step Instructions and Details
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Electric field due to uniformly charged sphere class 12 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Ideal and Non-Ideal Solutions Raoult's Law - JEE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
![arrow-right](/cdn/images/seo-templates/arrow-right.png)