
A magnet of magnetic moment $M$ is rotated through ${{360}^{o}}$ in a magnetic field $H$. Work done will be
A.$0$
B.$2\,MH$
C.$MH$
D.$\pi MH$
Answer
139.8k+ views
Hint: When a magnet is placed in a magnetic field, it experiences a torque. If a magnet is rotated against the torque, work has to be done. Here the magnet is rotated through an angle ${{360}^{o}}$ , so by putting this angle value in the respective equation we can calculate the value of work done.
Formula used:
The total work done $W$through rotating this magnet from an angle ${{\theta }_{1}}\,\,to\,\,{{\theta }_{2}}$ is given by,
$W=MH(\cos {{\theta }_{1}}-\cos {{\theta }_{2}})$
Where,
$M=$Magnetic moment
$H=$Magnetic field
Complete answer:
When a magnet with the magnetic moment $\overrightarrow{M}$, is placed in a magnetic field $\overrightarrow{H}$, it experiences a torque,$\overrightarrow{\tau }=\overrightarrow{M}\times \overrightarrow{H}$
Or,$\tau =MH\sin \theta $ [Since $\theta =$angle] …….(i)
Now, this torque tends to align parallel to the direction of the magnetic field but if this magnet is rotated against the torque, work is to be done.
Thus, work done,$W=\tau d\theta $
Putting the value $\tau $from equation (i) we get,
$W=MH\sin \theta \,\,d\theta $
The work done in turning the magnetic dipole through a small angle is,
$dW=\tau d\theta $
If the magnet is rotated from an angle ${{\theta }_{1}}\,to\,\,{{\theta }_{2}}$,
Total work done,
$\int{dW}=\int\limits_{{{\theta }_{1}}}^{{{\theta }_{2}}}{MH\sin \theta \,d\theta }$
Or,
$W=MH(-\cos \theta )_{{{\theta }_{1}}}^{{{\theta }_{2}}}$
Or,
$W=MH(\cos {{\theta }_{1}}-\cos {{\theta }_{2}})$ ……..(ii)
In this problem ${{\theta }_{1}}={{0}^{o}}$and ${{\theta }_{2}}={{360}^{o}}$. Putting these values in equation (ii),
$\therefore W=MH(\cos {{0}^{o}}-\cos {{360}^{o}})$
Or,$W=MH(1-1)=0$
Therefore work done is zero when the magnet is rotated through an angle ${{360}^{o}}$ in a magnetic field.
Thus, option (A) is correct.
Note: Torque is an influence that causes a change in the rotational motion of any object. To make any object about an axis by imparting torque on it. Generally, torque is a vector quantity which means it has both magnitude and direction. The S.I unit of torque is $N.m$or $kg\,{{m}^{2}}{{\sec }^{-2}}$.
Formula used:
The total work done $W$through rotating this magnet from an angle ${{\theta }_{1}}\,\,to\,\,{{\theta }_{2}}$ is given by,
$W=MH(\cos {{\theta }_{1}}-\cos {{\theta }_{2}})$
Where,
$M=$Magnetic moment
$H=$Magnetic field
Complete answer:
When a magnet with the magnetic moment $\overrightarrow{M}$, is placed in a magnetic field $\overrightarrow{H}$, it experiences a torque,$\overrightarrow{\tau }=\overrightarrow{M}\times \overrightarrow{H}$
Or,$\tau =MH\sin \theta $ [Since $\theta =$angle] …….(i)
Now, this torque tends to align parallel to the direction of the magnetic field but if this magnet is rotated against the torque, work is to be done.
Thus, work done,$W=\tau d\theta $
Putting the value $\tau $from equation (i) we get,
$W=MH\sin \theta \,\,d\theta $
The work done in turning the magnetic dipole through a small angle is,
$dW=\tau d\theta $
If the magnet is rotated from an angle ${{\theta }_{1}}\,to\,\,{{\theta }_{2}}$,
Total work done,
$\int{dW}=\int\limits_{{{\theta }_{1}}}^{{{\theta }_{2}}}{MH\sin \theta \,d\theta }$
Or,
$W=MH(-\cos \theta )_{{{\theta }_{1}}}^{{{\theta }_{2}}}$
Or,
$W=MH(\cos {{\theta }_{1}}-\cos {{\theta }_{2}})$ ……..(ii)
In this problem ${{\theta }_{1}}={{0}^{o}}$and ${{\theta }_{2}}={{360}^{o}}$. Putting these values in equation (ii),
$\therefore W=MH(\cos {{0}^{o}}-\cos {{360}^{o}})$
Or,$W=MH(1-1)=0$
Therefore work done is zero when the magnet is rotated through an angle ${{360}^{o}}$ in a magnetic field.
Thus, option (A) is correct.
Note: Torque is an influence that causes a change in the rotational motion of any object. To make any object about an axis by imparting torque on it. Generally, torque is a vector quantity which means it has both magnitude and direction. The S.I unit of torque is $N.m$or $kg\,{{m}^{2}}{{\sec }^{-2}}$.
Recently Updated Pages
Average fee range for JEE coaching in India- Complete Details

Difference Between Rows and Columns: JEE Main 2024

Difference Between Length and Height: JEE Main 2024

Difference Between Natural and Whole Numbers: JEE Main 2024

Algebraic Formula

Difference Between Constants and Variables: JEE Main 2024

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

A point charge + 20mu C is at a distance 6cm directly class 12 physics JEE_Main

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
