Answer
Verified
114.9k+ views
Hint: When a magnet is placed in a magnetic field, it experiences a torque. If a magnet is rotated against the torque, work has to be done. Here the magnet is rotated through an angle ${{360}^{o}}$ , so by putting this angle value in the respective equation we can calculate the value of work done.
Formula used:
The total work done $W$through rotating this magnet from an angle ${{\theta }_{1}}\,\,to\,\,{{\theta }_{2}}$ is given by,
$W=MH(\cos {{\theta }_{1}}-\cos {{\theta }_{2}})$
Where,
$M=$Magnetic moment
$H=$Magnetic field
Complete answer:
When a magnet with the magnetic moment $\overrightarrow{M}$, is placed in a magnetic field $\overrightarrow{H}$, it experiences a torque,$\overrightarrow{\tau }=\overrightarrow{M}\times \overrightarrow{H}$
Or,$\tau =MH\sin \theta $ [Since $\theta =$angle] …….(i)
Now, this torque tends to align parallel to the direction of the magnetic field but if this magnet is rotated against the torque, work is to be done.
Thus, work done,$W=\tau d\theta $
Putting the value $\tau $from equation (i) we get,
$W=MH\sin \theta \,\,d\theta $
The work done in turning the magnetic dipole through a small angle is,
$dW=\tau d\theta $
If the magnet is rotated from an angle ${{\theta }_{1}}\,to\,\,{{\theta }_{2}}$,
Total work done,
$\int{dW}=\int\limits_{{{\theta }_{1}}}^{{{\theta }_{2}}}{MH\sin \theta \,d\theta }$
Or,
$W=MH(-\cos \theta )_{{{\theta }_{1}}}^{{{\theta }_{2}}}$
Or,
$W=MH(\cos {{\theta }_{1}}-\cos {{\theta }_{2}})$ ……..(ii)
In this problem ${{\theta }_{1}}={{0}^{o}}$and ${{\theta }_{2}}={{360}^{o}}$. Putting these values in equation (ii),
$\therefore W=MH(\cos {{0}^{o}}-\cos {{360}^{o}})$
Or,$W=MH(1-1)=0$
Therefore work done is zero when the magnet is rotated through an angle ${{360}^{o}}$ in a magnetic field.
Thus, option (A) is correct.
Note: Torque is an influence that causes a change in the rotational motion of any object. To make any object about an axis by imparting torque on it. Generally, torque is a vector quantity which means it has both magnitude and direction. The S.I unit of torque is $N.m$or $kg\,{{m}^{2}}{{\sec }^{-2}}$.
Formula used:
The total work done $W$through rotating this magnet from an angle ${{\theta }_{1}}\,\,to\,\,{{\theta }_{2}}$ is given by,
$W=MH(\cos {{\theta }_{1}}-\cos {{\theta }_{2}})$
Where,
$M=$Magnetic moment
$H=$Magnetic field
Complete answer:
When a magnet with the magnetic moment $\overrightarrow{M}$, is placed in a magnetic field $\overrightarrow{H}$, it experiences a torque,$\overrightarrow{\tau }=\overrightarrow{M}\times \overrightarrow{H}$
Or,$\tau =MH\sin \theta $ [Since $\theta =$angle] …….(i)
Now, this torque tends to align parallel to the direction of the magnetic field but if this magnet is rotated against the torque, work is to be done.
Thus, work done,$W=\tau d\theta $
Putting the value $\tau $from equation (i) we get,
$W=MH\sin \theta \,\,d\theta $
The work done in turning the magnetic dipole through a small angle is,
$dW=\tau d\theta $
If the magnet is rotated from an angle ${{\theta }_{1}}\,to\,\,{{\theta }_{2}}$,
Total work done,
$\int{dW}=\int\limits_{{{\theta }_{1}}}^{{{\theta }_{2}}}{MH\sin \theta \,d\theta }$
Or,
$W=MH(-\cos \theta )_{{{\theta }_{1}}}^{{{\theta }_{2}}}$
Or,
$W=MH(\cos {{\theta }_{1}}-\cos {{\theta }_{2}})$ ……..(ii)
In this problem ${{\theta }_{1}}={{0}^{o}}$and ${{\theta }_{2}}={{360}^{o}}$. Putting these values in equation (ii),
$\therefore W=MH(\cos {{0}^{o}}-\cos {{360}^{o}})$
Or,$W=MH(1-1)=0$
Therefore work done is zero when the magnet is rotated through an angle ${{360}^{o}}$ in a magnetic field.
Thus, option (A) is correct.
Note: Torque is an influence that causes a change in the rotational motion of any object. To make any object about an axis by imparting torque on it. Generally, torque is a vector quantity which means it has both magnitude and direction. The S.I unit of torque is $N.m$or $kg\,{{m}^{2}}{{\sec }^{-2}}$.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
Hybridization of Atomic Orbitals Important Concepts and Tips for JEE
Atomic Structure: Complete Explanation for JEE Main 2025
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Physics Average Value and RMS Value JEE Main 2025
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Charging and Discharging of Capacitor