Answer
Verified
99.9k+ views
Hint:
To solve this question we have to use the basic formula of work done in moving a dipole in an external magnetic field. Use the given data and by putting it into the equation we can directly solve the question.
Formula used:
\[W = MB(1 - \cos \theta )\]
\[M\]- magnetic moment of the dipole
\[B\]- magnetic field strength
Complete step by step solution:
let us solve the given question by using the given data.
Given data: \[M\]- magnetic moment of the dipole.
\[B\]- magnetic field strength
\[\theta = {180^0}\]
Now, by using formula for work done in moving the dipole with magnetic moment in given magnetic field by the angle of \[{180^0}\] we have:
\[W = MB(1 - \cos \theta )\]
By using \[\theta = {180^0}\]in above equation we get
\[ \Rightarrow W = MB(1 - \cos {180^0})\]
\[ \Rightarrow W = MB(1 - ( - 1))\]
\[ \Rightarrow W = 2MB\]
Hence, the work done on the magnet to rotate it with the angle of \[{180^0}\]is \[2MB\].
Correct answer is option c.
Therefore, the correct option is C.
Note:
In this question, the dipole is along the magnetic field also called stable equilibrium position and rotating the magnet by \[{180^0}\] then it will be at unstable equilibrium position. A particle always tries to remain at a stable equilibrium position so whenever we move the dipole from its stable equilibrium position we have to do some extra work.
To solve this question we have to use the basic formula of work done in moving a dipole in an external magnetic field. Use the given data and by putting it into the equation we can directly solve the question.
Formula used:
\[W = MB(1 - \cos \theta )\]
\[M\]- magnetic moment of the dipole
\[B\]- magnetic field strength
Complete step by step solution:
let us solve the given question by using the given data.
Given data: \[M\]- magnetic moment of the dipole.
\[B\]- magnetic field strength
\[\theta = {180^0}\]
Now, by using formula for work done in moving the dipole with magnetic moment in given magnetic field by the angle of \[{180^0}\] we have:
\[W = MB(1 - \cos \theta )\]
By using \[\theta = {180^0}\]in above equation we get
\[ \Rightarrow W = MB(1 - \cos {180^0})\]
\[ \Rightarrow W = MB(1 - ( - 1))\]
\[ \Rightarrow W = 2MB\]
Hence, the work done on the magnet to rotate it with the angle of \[{180^0}\]is \[2MB\].
Correct answer is option c.
Therefore, the correct option is C.
Note:
In this question, the dipole is along the magnetic field also called stable equilibrium position and rotating the magnet by \[{180^0}\] then it will be at unstable equilibrium position. A particle always tries to remain at a stable equilibrium position so whenever we move the dipole from its stable equilibrium position we have to do some extra work.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
A series RLC circuit consists of an 8Omega resistor class 12 physics JEE_Main
The shape of XeF5 + ion is A Pentagonal B Octahedral class 11 chemistry JEE_Main
A block A slides over another block B which is placed class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Two billiard balls of the same size and mass are in class 11 physics JEE_Main
A tetracyanomethane B carbon dioxide C benzene and class 11 chemistry JEE_Main