Answer
Verified
114.9k+ views
Hint: We are given the magnetic dipole in a constant magnetic field and are asked about the change in torque when there is a change in potential energy. Thus, we will take a formula of potential energy and then discuss the change in it. Then, we will take a formula for torque on a magnetic dipole. Then finally we will try to connect the change in both these parameters.
Formula Used
$U = - \vec \mu .\vec B = - \mu B\cos \theta $
Where, $U$ is the potential energy on a magnetic dipole, $\vec \mu $ is the magnetic dipole moment of the dipole and $\vec B$ is the uniform magnetic field in which the magnetic dipole is placed and $\theta $ is the angle between $\mu $ and $B$ .
$\vec \tau = \vec \mu \times \vec B = \mu B\sin \theta \hat n$
Where, $\vec \tau $ is the torque acting on the magnetic dipole, $\vec \mu $ is the magnetic dipole moment of the dipole and $\vec B$ is the uniform magnetic field in which the magnetic dipole is placed and $\theta $ is the angle between $\mu $ and $B$ . $\hat n$ is the direction of the torque which is perpendicular to the plane containing $\vec \mu $ and $\vec B$ .
Step By Step Solution
We know,
Potential energy of the magnetic dipole, $U = - \vec \mu .\vec B = - \mu B\cos \theta $
Now,
The magnetic dipole moment ($\vec \mu $) and magnetic field ($\vec B$) are constant parameters, only the $\cos \theta $ is the only varying parameter.
Now,
$\cos \theta $ is maximum when $\cos \theta = 1$ or $\theta = 2n\pi ;n = 0,1,2,...$ and then $\cos \theta $ is minimum when $\cos \theta = - 1$ or $\theta = (2n - 1)\pi ;n = 0,1,2,3,...$.
Also,
We know,
Torque acting on the magnetic dipole, $\vec \tau = \vec \mu \times \vec B = \mu B\sin \theta \hat n$
From this, we will only take the magnitude of the torque in order to compare the change with the potential energy change.
Thus,
$|\vec \tau | = \mu B\sin \theta $
Out of here also only the $\sin \theta $ is the varying parameter.
Now,
$\sin \theta $ is maximum when $\sin \theta = 1$ or $\theta = (2n + 1)\dfrac{\pi }{2};n = 1,2,3,...$ and $\sin \theta $ is minimum when $\sin \theta = 0$ or $\theta = n\pi ;n = 0,1,2,...$.
Thus, we can say that the points when the value of $\cos \theta $ is maximum when $\sin \theta $ is minimum and vice versa. Broadly speaking, when potential energy is zero, then the torque is maximum.
Hence, the answer is (C).
Note: We were asked to find the relation between potential energy and torque of the magnetic dipole. If we were asked for the relation between some other parameters, the calculations would be somewhat different but the workflow remains the same.
Formula Used
$U = - \vec \mu .\vec B = - \mu B\cos \theta $
Where, $U$ is the potential energy on a magnetic dipole, $\vec \mu $ is the magnetic dipole moment of the dipole and $\vec B$ is the uniform magnetic field in which the magnetic dipole is placed and $\theta $ is the angle between $\mu $ and $B$ .
$\vec \tau = \vec \mu \times \vec B = \mu B\sin \theta \hat n$
Where, $\vec \tau $ is the torque acting on the magnetic dipole, $\vec \mu $ is the magnetic dipole moment of the dipole and $\vec B$ is the uniform magnetic field in which the magnetic dipole is placed and $\theta $ is the angle between $\mu $ and $B$ . $\hat n$ is the direction of the torque which is perpendicular to the plane containing $\vec \mu $ and $\vec B$ .
Step By Step Solution
We know,
Potential energy of the magnetic dipole, $U = - \vec \mu .\vec B = - \mu B\cos \theta $
Now,
The magnetic dipole moment ($\vec \mu $) and magnetic field ($\vec B$) are constant parameters, only the $\cos \theta $ is the only varying parameter.
Now,
$\cos \theta $ is maximum when $\cos \theta = 1$ or $\theta = 2n\pi ;n = 0,1,2,...$ and then $\cos \theta $ is minimum when $\cos \theta = - 1$ or $\theta = (2n - 1)\pi ;n = 0,1,2,3,...$.
Also,
We know,
Torque acting on the magnetic dipole, $\vec \tau = \vec \mu \times \vec B = \mu B\sin \theta \hat n$
From this, we will only take the magnitude of the torque in order to compare the change with the potential energy change.
Thus,
$|\vec \tau | = \mu B\sin \theta $
Out of here also only the $\sin \theta $ is the varying parameter.
Now,
$\sin \theta $ is maximum when $\sin \theta = 1$ or $\theta = (2n + 1)\dfrac{\pi }{2};n = 1,2,3,...$ and $\sin \theta $ is minimum when $\sin \theta = 0$ or $\theta = n\pi ;n = 0,1,2,...$.
Thus, we can say that the points when the value of $\cos \theta $ is maximum when $\sin \theta $ is minimum and vice versa. Broadly speaking, when potential energy is zero, then the torque is maximum.
Hence, the answer is (C).
Note: We were asked to find the relation between potential energy and torque of the magnetic dipole. If we were asked for the relation between some other parameters, the calculations would be somewhat different but the workflow remains the same.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
Hybridization of Atomic Orbitals Important Concepts and Tips for JEE
Atomic Structure: Complete Explanation for JEE Main 2025
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Degree of Dissociation and Its Formula With Solved Example for JEE
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Diffraction of Light - Young’s Single Slit Experiment
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation
Electric field due to uniformly charged sphere class 12 physics JEE_Main