
A man m = 80kg is standing on a trolley of mass 320kg on a smooth surface. If man starts walking on trolley along rails at speed 1m/s, then after 4 seconds, his displacement from the ground.
Answer
147k+ views
Hint: Here to make the center of mass stay the same, the trolley will move in the direction opposite to the man walking. Here the man has walked the distance of 4m relative to the trolley as $d = s \times t$, where d = distance, s = speed, t = time. So, $d = 4(s) \times 1(m/s) = 4m$. Let’s suppose the trolley travelled x distance relative to ground so the net displacement of the man would be 4-x. The formula for center of mass is${m_1}{x_1} = {m_2}{x_2}$. Where ${m_1}$= Mass of object 1; ${m_2}$= Mass of object 2; ${x_1}$= distance covered by object 1; ${x_2}$= Distance covered by object 2. Apply this formula and solve.
Formula Used:
The formula for center of mass is given as
${m_1}{x_1} = {m_2}{x_2}$
Where:
${m_1}$= Mass of object 1 (80kg)
${m_2}$ = Mass of object 2 (320kg)
${x_1}$= Distance covered by object 1 (4-x)
${x_2}$= Distance covered by object 2 (x)
Complete step by step answer:
Apply the formula for the center of mass
${m_1}{x_1} = {m_2}{x_2}$
Put the given values in the equation and simplify it.
$\implies$ $80 \times (4 - x) = 320 \times x$
Separate x on the RHS and the numerical value on the LHS
$\implies$ $(4 - x) = \dfrac{{320}}{{80}} \times x$
Solve, for the unknown x, which is the distance covered by the train relative to ground.
$\implies$ $(4 - x) = \dfrac{{320}}{{80}} \times x$
Simplify the above equation
$\implies$ \[(4 - x) = 4 \times x\]
$\therefore $ \[x = \dfrac{4}{5}\]
x = 0.8m;
The net displacement of the man is 4-0.8= 3.2m.
Final Answer: The net displacement of the man is 3.2m
Note:We can also solve this by applying conservation of linear momentum. In this question the total net external force on the system is zero. According to the conservation of momentum the momentum of man walking forward would be equal to the momentum of the entire system in the backward direction then only the conservation of linear momentum would be valid.
${m_1} \times {v_1} = {m_2} \times {v_2}$;
Here:
$\implies$ ${m_1}$= Mass of the object 1;
$\implies$ ${v_1}$= Velocity of the object 1;
$\implies$ ${m_2}$= Mass of the object 2;
$\implies$ ${v_2}$= Velocity of the object 2;
Put the value in the above equation and solve,
$\implies$ $80 \times 1 = (80 + 320) \times {v_2}$; ….(Here ${m_2}$= Mass of the man + Mass of the trolley )
Keep${v_2}$ in the RHS and take the rest to LHS.
$\implies$ $\dfrac{{80}}{{80 + 320}} = {v_2}$;
$\implies$ ${v_2} = 0.2m/s$;
Here the velocity of man with respect to ground is = ${v_1} - {v_2}$;
$\implies$ $1 - 0.2 = 0.8m/s$;
Now we the formula for speed, distance and time:
$\implies$ $S = \dfrac{D}{T}$ ;
Rearrange the above equation and solve for D
$\implies$ $S \times T = D$;
$\implies$ $D = 0.8 \times 4$;
$\implies$ D = 3.2m;
One has to apply the concept of center of mass and apply its formula. Here to conserve the center of mass the train is moving in the opposite direction and that is why we subtract the distance covered by the trolley to the distance covered by the man on the trolley.
Formula Used:
The formula for center of mass is given as
${m_1}{x_1} = {m_2}{x_2}$
Where:
${m_1}$= Mass of object 1 (80kg)
${m_2}$ = Mass of object 2 (320kg)
${x_1}$= Distance covered by object 1 (4-x)
${x_2}$= Distance covered by object 2 (x)
Complete step by step answer:
Apply the formula for the center of mass
${m_1}{x_1} = {m_2}{x_2}$
Put the given values in the equation and simplify it.
$\implies$ $80 \times (4 - x) = 320 \times x$
Separate x on the RHS and the numerical value on the LHS
$\implies$ $(4 - x) = \dfrac{{320}}{{80}} \times x$
Solve, for the unknown x, which is the distance covered by the train relative to ground.
$\implies$ $(4 - x) = \dfrac{{320}}{{80}} \times x$
Simplify the above equation
$\implies$ \[(4 - x) = 4 \times x\]
$\therefore $ \[x = \dfrac{4}{5}\]
x = 0.8m;
The net displacement of the man is 4-0.8= 3.2m.
Final Answer: The net displacement of the man is 3.2m
Note:We can also solve this by applying conservation of linear momentum. In this question the total net external force on the system is zero. According to the conservation of momentum the momentum of man walking forward would be equal to the momentum of the entire system in the backward direction then only the conservation of linear momentum would be valid.
${m_1} \times {v_1} = {m_2} \times {v_2}$;
Here:
$\implies$ ${m_1}$= Mass of the object 1;
$\implies$ ${v_1}$= Velocity of the object 1;
$\implies$ ${m_2}$= Mass of the object 2;
$\implies$ ${v_2}$= Velocity of the object 2;
Put the value in the above equation and solve,
$\implies$ $80 \times 1 = (80 + 320) \times {v_2}$; ….(Here ${m_2}$= Mass of the man + Mass of the trolley )
Keep${v_2}$ in the RHS and take the rest to LHS.
$\implies$ $\dfrac{{80}}{{80 + 320}} = {v_2}$;
$\implies$ ${v_2} = 0.2m/s$;
Here the velocity of man with respect to ground is = ${v_1} - {v_2}$;
$\implies$ $1 - 0.2 = 0.8m/s$;
Now we the formula for speed, distance and time:
$\implies$ $S = \dfrac{D}{T}$ ;
Rearrange the above equation and solve for D
$\implies$ $S \times T = D$;
$\implies$ $D = 0.8 \times 4$;
$\implies$ D = 3.2m;
One has to apply the concept of center of mass and apply its formula. Here to conserve the center of mass the train is moving in the opposite direction and that is why we subtract the distance covered by the trolley to the distance covered by the man on the trolley.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
