
A mass $M Kg$ is suspended by a weightless string. The horizontal force required to hold the mass at ${60^o}$ with the vertical is
(A) $Mg$
(B) $Mg\sqrt 3 $
(C) $Mg\left( {\sqrt 3 + 1} \right)$
(D) $\dfrac{{Mg}}{{\sqrt 3 }}$
Answer
131.7k+ views
Hint We are given with a body suspended by a weightless string and are asked to find the horizontal force required to hold the mass at the given angle. Thus, we will use the work energy theorem to solve the given problem.
Formulae Used:
$W = \Delta T$
Where,$W$ is the work done by the body and$\Delta {\rm T}$ is the change in kinetic energy.
Complete step by step solution

Here,
The total work done is$W = {W_{{T_1}}} + {W_{{T_2}}}$
Where,$W$ is the net work done,${W_{{T_1}}}$ is the work done by the tension${T_1}$ and${W_{{T_2}}}$ is the work done by the tension${T_2}$.
Now,
As the string is the same, then the tension will remain constant.
Thus,
${T_1} = {T_2} = T$
Now,
As per the diagram,
$T = Mg$
Also,
As the horizontal force acting on the body is constant and thus the velocity of the body remains constant and thus, the change in the kinetic energy of the body is$0$.
Thus,
${W_{{T_1}}} + {W_{{T_2}}} = \Delta T$
Then,
${W_{{T_1}}} + {W_{{T_2}}} = 0$
Further, we get
$F \times AC + {F_H} \times AB = 0$
Now,
The force on the body is$T$.
Then, we get
${F_H} = - F\left( {\dfrac{{AC}}{{AB}}} \right)$
Further, we get
${F_H} = \left( { - Mg} \right)\left( {\dfrac{{ - h}}{{AB}}} \right)$
Then, we get
${F_H} = \left( { - Mg} \right)\left( { - \tan {{60}^o}} \right)$
Then, we get
${F_H} = Mg\sqrt 3 $
Hence, The correct option is (B).
Note We calculated the answer using the work energy theorem. This is because, for the moving body, we can relate the work done and the energy of the body to a great precision.
Formulae Used:
$W = \Delta T$
Where,$W$ is the work done by the body and$\Delta {\rm T}$ is the change in kinetic energy.
Complete step by step solution

Here,
The total work done is$W = {W_{{T_1}}} + {W_{{T_2}}}$
Where,$W$ is the net work done,${W_{{T_1}}}$ is the work done by the tension${T_1}$ and${W_{{T_2}}}$ is the work done by the tension${T_2}$.
Now,
As the string is the same, then the tension will remain constant.
Thus,
${T_1} = {T_2} = T$
Now,
As per the diagram,
$T = Mg$
Also,
As the horizontal force acting on the body is constant and thus the velocity of the body remains constant and thus, the change in the kinetic energy of the body is$0$.
Thus,
${W_{{T_1}}} + {W_{{T_2}}} = \Delta T$
Then,
${W_{{T_1}}} + {W_{{T_2}}} = 0$
Further, we get
$F \times AC + {F_H} \times AB = 0$
Now,
The force on the body is$T$.
Then, we get
${F_H} = - F\left( {\dfrac{{AC}}{{AB}}} \right)$
Further, we get
${F_H} = \left( { - Mg} \right)\left( {\dfrac{{ - h}}{{AB}}} \right)$
Then, we get
${F_H} = \left( { - Mg} \right)\left( { - \tan {{60}^o}} \right)$
Then, we get
${F_H} = Mg\sqrt 3 $
Hence, The correct option is (B).
Note We calculated the answer using the work energy theorem. This is because, for the moving body, we can relate the work done and the energy of the body to a great precision.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

The x t graph of a particle undergoing simple harmonic class 11 physics JEE_MAIN

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Clemmenson and Wolff Kishner Reductions for JEE

JEE Main 2025 Session 2 Registration Open – Apply Now! Form Link, Last Date and Fees

Molar Conductivity

Raoult's Law with Examples

Other Pages
Waves Class 11 Notes: CBSE Physics Chapter 14

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 4 Laws of Motion

NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids

NCERT Solutions for Class 11 Physics Chapter 10 Thermal Properties of Matter
