Answer
Verified
110.7k+ views
Hint We are given with a body suspended by a weightless string and are asked to find the horizontal force required to hold the mass at the given angle. Thus, we will use the work energy theorem to solve the given problem.
Formulae Used:
$W = \Delta T$
Where,$W$ is the work done by the body and$\Delta {\rm T}$ is the change in kinetic energy.
Complete step by step solution
Here,
The total work done is$W = {W_{{T_1}}} + {W_{{T_2}}}$
Where,$W$ is the net work done,${W_{{T_1}}}$ is the work done by the tension${T_1}$ and${W_{{T_2}}}$ is the work done by the tension${T_2}$.
Now,
As the string is the same, then the tension will remain constant.
Thus,
${T_1} = {T_2} = T$
Now,
As per the diagram,
$T = Mg$
Also,
As the horizontal force acting on the body is constant and thus the velocity of the body remains constant and thus, the change in the kinetic energy of the body is$0$.
Thus,
${W_{{T_1}}} + {W_{{T_2}}} = \Delta T$
Then,
${W_{{T_1}}} + {W_{{T_2}}} = 0$
Further, we get
$F \times AC + {F_H} \times AB = 0$
Now,
The force on the body is$T$.
Then, we get
${F_H} = - F\left( {\dfrac{{AC}}{{AB}}} \right)$
Further, we get
${F_H} = \left( { - Mg} \right)\left( {\dfrac{{ - h}}{{AB}}} \right)$
Then, we get
${F_H} = \left( { - Mg} \right)\left( { - \tan {{60}^o}} \right)$
Then, we get
${F_H} = Mg\sqrt 3 $
Hence, The correct option is (B).
Note We calculated the answer using the work energy theorem. This is because, for the moving body, we can relate the work done and the energy of the body to a great precision.
Formulae Used:
$W = \Delta T$
Where,$W$ is the work done by the body and$\Delta {\rm T}$ is the change in kinetic energy.
Complete step by step solution
Here,
The total work done is$W = {W_{{T_1}}} + {W_{{T_2}}}$
Where,$W$ is the net work done,${W_{{T_1}}}$ is the work done by the tension${T_1}$ and${W_{{T_2}}}$ is the work done by the tension${T_2}$.
Now,
As the string is the same, then the tension will remain constant.
Thus,
${T_1} = {T_2} = T$
Now,
As per the diagram,
$T = Mg$
Also,
As the horizontal force acting on the body is constant and thus the velocity of the body remains constant and thus, the change in the kinetic energy of the body is$0$.
Thus,
${W_{{T_1}}} + {W_{{T_2}}} = \Delta T$
Then,
${W_{{T_1}}} + {W_{{T_2}}} = 0$
Further, we get
$F \times AC + {F_H} \times AB = 0$
Now,
The force on the body is$T$.
Then, we get
${F_H} = - F\left( {\dfrac{{AC}}{{AB}}} \right)$
Further, we get
${F_H} = \left( { - Mg} \right)\left( {\dfrac{{ - h}}{{AB}}} \right)$
Then, we get
${F_H} = \left( { - Mg} \right)\left( { - \tan {{60}^o}} \right)$
Then, we get
${F_H} = Mg\sqrt 3 $
Hence, The correct option is (B).
Note We calculated the answer using the work energy theorem. This is because, for the moving body, we can relate the work done and the energy of the body to a great precision.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main