
A merry go round has a radius of 4m and completes a revolution in 2s. Then acceleration of a point on its rim will be:
A)
B)
C)
D)
Answer
141k+ views
Hint: In this question we have to find the acceleration of a point on the rim of the merry go round. The radius and the time of one revolution are given. To find acceleration, first we will find the velocity and then further we will move with the calculation.
Complete step by step solution:
Given,
The distance in this question is the rim or circumference of the path. So, the distance will be . Now, we will put the value of distance and time
Acceleration
Hence, from above calculation we have seen that the value of acceleration is .
Note: In this question we have to find the value of acceleration; so we have used the formula of acceleration. Merry go round is a type of amusement ride. It is circular shaped. The motion of a merry go round is circular motion. In this motion the merry go round exerts a centripetal force on the person riding it. The more we move away from the center of circular motion the more centripetal force will be applied on the person riding it. To keep moving in this motion the merry go round must exert more force on the person.
The centripetal force is the force that makes the body follow a curved path. It acts in the perpendicular direction to the body and towards a fixed point. The centripetal force on the person will be given by following formula;
Where,
is the centripetal force in newton (N)
is mass in kg
is velocity in m/s
is the radius of motion in m
Complete step by step solution:
Given,
The distance in this question is the rim or circumference of the path. So, the distance will be
Acceleration
Hence, from above calculation we have seen that the value of acceleration is
Note: In this question we have to find the value of acceleration; so we have used the formula of acceleration. Merry go round is a type of amusement ride. It is circular shaped. The motion of a merry go round is circular motion. In this motion the merry go round exerts a centripetal force on the person riding it. The more we move away from the center of circular motion the more centripetal force will be applied on the person riding it. To keep moving in this motion the merry go round must exert more force on the person.
The centripetal force is the force that makes the body follow a curved path. It acts in the perpendicular direction to the body and towards a fixed point. The centripetal force on the person will be given by following formula;
Where,
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
