Answer
Verified
110.4k+ views
Hint: When the light of a certain wavelength strikes on a metal surface, electrons get emitted from the metal surface. This electron is known as photoelectron and the phenomenon of emission of electrons from the metal surface, when exposed to the light, is known as the photoelectric effect. The prefix ‘photo’ is a Greek word that means light.
Complete step by step solution:
We know that Einstein’s photoelectric equation is given by,
$\dfrac{{e{V_o}}}{{hc}} = \dfrac{1}{\lambda } - \dfrac{1}{{{\lambda _o}}}$ …….. (1)
Where ${V_o}$ is the stopping voltage, $\lambda $ is the corresponding wavelength of the light and ${{\lambda _o}}$ is the threshold wavelength of the light.
For a wavelength $\lambda $ the corresponding stopping voltage is X. Hence putting, ${V_o} = X$ in equation (1) we get,
$\dfrac{{eX}}{{hc}} = \dfrac{1}{\lambda } - \dfrac{1}{{{\lambda _o}}}$ ……… (2)
For a wavelength ${2\lambda }$ the corresponding stopping voltage is X. Hence putting, ${V_o} = \dfrac{X}{3}$ and replace ${\lambda }$ with ${2\lambda }$ in equation (1) we get,
$\dfrac{{eX}}{{3hc}} = \dfrac{1}{{2\lambda }} - \dfrac{1}{{{\lambda _o}}}$ …….. (3)
Dividing equation (2) by equation (3) we get,
$ \Rightarrow 3 = \dfrac{{\dfrac{1}{\lambda } - a}}{\begin{array}{l}\dfrac{1}{{2\lambda }} - a\\\end{array}}$
Where $a = \dfrac{1}{{{\lambda _o}}}$ for the sake of simplification of calculations.
$ \Rightarrow 3 = \dfrac{{1 - \lambda a}}{{\dfrac{{1 - 2a\lambda }}{2}}}$
$ \Rightarrow 3 - 6a\lambda = 2 - 2a\lambda $
$ \Rightarrow a = \dfrac{1}{{4\lambda }}$
$ \Rightarrow \dfrac{1}{{{\lambda _o}}} = \dfrac{1}{{4\lambda }}$
$\therefore {\lambda _o} = 4\lambda $
The value of threshold wavelength is found to be $4\lambda $ hence we can conclude that option B is the correct answer option.
Note: Let us understand the difference between threshold frequency and threshold wavelength.
1. A threshold frequency is the minimum frequency of incident radiation which causes the photoelectric effect to occur. Below the threshold frequency, the photoelectric effect does not occur. The threshold frequency is denoted by ${\nu _o}$. It is measured in Hz.
2. A threshold wavelength is a maximum wavelength of incident radiations which causes the photoelectric effect to occur. Above the threshold wavelength, the photoelectric effect does not occur. The threshold frequency is denoted by ${\lambda _o}$.
The threshold frequency and threshold wavelength have an inverse relationship.
Complete step by step solution:
We know that Einstein’s photoelectric equation is given by,
$\dfrac{{e{V_o}}}{{hc}} = \dfrac{1}{\lambda } - \dfrac{1}{{{\lambda _o}}}$ …….. (1)
Where ${V_o}$ is the stopping voltage, $\lambda $ is the corresponding wavelength of the light and ${{\lambda _o}}$ is the threshold wavelength of the light.
For a wavelength $\lambda $ the corresponding stopping voltage is X. Hence putting, ${V_o} = X$ in equation (1) we get,
$\dfrac{{eX}}{{hc}} = \dfrac{1}{\lambda } - \dfrac{1}{{{\lambda _o}}}$ ……… (2)
For a wavelength ${2\lambda }$ the corresponding stopping voltage is X. Hence putting, ${V_o} = \dfrac{X}{3}$ and replace ${\lambda }$ with ${2\lambda }$ in equation (1) we get,
$\dfrac{{eX}}{{3hc}} = \dfrac{1}{{2\lambda }} - \dfrac{1}{{{\lambda _o}}}$ …….. (3)
Dividing equation (2) by equation (3) we get,
$ \Rightarrow 3 = \dfrac{{\dfrac{1}{\lambda } - a}}{\begin{array}{l}\dfrac{1}{{2\lambda }} - a\\\end{array}}$
Where $a = \dfrac{1}{{{\lambda _o}}}$ for the sake of simplification of calculations.
$ \Rightarrow 3 = \dfrac{{1 - \lambda a}}{{\dfrac{{1 - 2a\lambda }}{2}}}$
$ \Rightarrow 3 - 6a\lambda = 2 - 2a\lambda $
$ \Rightarrow a = \dfrac{1}{{4\lambda }}$
$ \Rightarrow \dfrac{1}{{{\lambda _o}}} = \dfrac{1}{{4\lambda }}$
$\therefore {\lambda _o} = 4\lambda $
The value of threshold wavelength is found to be $4\lambda $ hence we can conclude that option B is the correct answer option.
Note: Let us understand the difference between threshold frequency and threshold wavelength.
1. A threshold frequency is the minimum frequency of incident radiation which causes the photoelectric effect to occur. Below the threshold frequency, the photoelectric effect does not occur. The threshold frequency is denoted by ${\nu _o}$. It is measured in Hz.
2. A threshold wavelength is a maximum wavelength of incident radiations which causes the photoelectric effect to occur. Above the threshold wavelength, the photoelectric effect does not occur. The threshold frequency is denoted by ${\lambda _o}$.
The threshold frequency and threshold wavelength have an inverse relationship.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main