
A microwave and an ultrasonic sound wave have the same wavelength. Their frequencies are in the ratio (approximately)
\[
{{(A) 1}}{{{0}}^{{2}}} \\
{{(B) 1}}{{{0}}^{{4}}} \\
{{(C) 1}}{{{0}}^{{6}}} \\
{{(D) 1}}{{{0}}^{{8}}} \]
Answer
138.6k+ views
Hint: Both the microwave and ultrasonic sound waves are electromagnetic waves. Electromagnetic waves are the waves in which magnetic field vector and electric field vector are mutually perpendicular to each other and their propagation is also perpendicular to both the electric and magnetic field vector. Try to recall the formula in which the wavelength and frequencies of the waves are related to each other.
Complete step by step solution:
Velocity of the microwave is ${{{v}}_{{m}}}{{ = 3 \times 1}}{{{0}}^{{8}}}{{ m/s}}$ which is equal to the speed of light.
Velocity of the ultrasonic waves is ${{{v}}_{{u}}}{{ = 3 \times 1}}{{{0}}^{{2}}}{{ m/s}}$
The relationship between the wavelength and the frequency is given by the formula:
${{\upsilon = }}\dfrac{{{v}}}{{{\lambda }}}$
For microwave, the relation between wavelength and the frequency can be modified by using above formula as:
$\Rightarrow {{{\upsilon }}_{{m}}}{{ = }}\dfrac{{{{{v}}_{{m}}}}}{{{{{\lambda }}_{{m}}}}}$
Similarly, for ultrasonic waves we have
$\Rightarrow {{{\upsilon }}_{{u}}}{{ = }}\dfrac{{{{{v}}_{{u}}}}}{{{{{\lambda }}_{{u}}}}}$
It is given that microwave and an ultrasonic sound wave have the same wavelength i.e. $\Rightarrow {{{\lambda }}_{{m}}}{{ = }}{{{\lambda }}_{{u}}}{{ = \lambda }}$ so ${{{\upsilon }}_{{m}}}{{ = }}\dfrac{{{{{v}}_{{m}}}}}{{{\lambda }}}$ and ${{{\upsilon }}_{{u}}}{{ = }}\dfrac{{{{{v}}_{{u}}}}}{{{{{\lambda }}_{{u}}}}}$
Now, the ratio of the frequencies of a microwave and an ultrasonic sound wave is given by
$\Rightarrow \dfrac{{{{{\upsilon }}_{{m}}}}}{{{{{\upsilon }}_{{u}}}}}{{ = }}\dfrac{{\dfrac{{{{{v}}_{{m}}}}}{{{\lambda }}}}}{{\dfrac{{{{{v}}_{{u}}}}}{{{\lambda }}}}}$
Or $\dfrac{{{{{\upsilon }}_{{m}}}}}{{{{{\upsilon }}_{{u}}}}}{{ = }}\dfrac{{\dfrac{{{{{v}}_{{m}}}}}{{{1}}}}}{{\dfrac{{{{{v}}_{{u}}}}}{{{1}}}}}{{ }} \\
\therefore \dfrac{{{{{\upsilon }}_{{m}}}}}{{{{{\upsilon }}_{{u}}}}}{{ = }}\dfrac{{{{{v}}_{{m}}}}}{{{{{v}}_{{u}}}}} $
On substituting the values in above relation, we get
$\Rightarrow \dfrac{{{{{\upsilon }}_{{m}}}}}{{{{{\upsilon }}_{{u}}}}}{{ = }}\dfrac{{3 \times {{10}^8}}}{{3 \times {{10}^2}}} = {10^6}$
Thus, the ratio of the frequencies of a microwave and an ultrasonic sound wave is ${10^6}$.
Therefore, option (C) is the correct choice.
Note: The SI unit of velocity is ${{m/s}}$. The SI unit of frequency is hertz (${{Hz}}$). The SI unit of wavelength is meter (${{m}}$). As the SI unit of frequency is hertz (${{Hz}}$) but in the answer no SI unit is mentioned. It is so because the ratio of frequencies of both the electromagnetic waves are given so it is a unit less quantity.
Complete step by step solution:
Velocity of the microwave is ${{{v}}_{{m}}}{{ = 3 \times 1}}{{{0}}^{{8}}}{{ m/s}}$ which is equal to the speed of light.
Velocity of the ultrasonic waves is ${{{v}}_{{u}}}{{ = 3 \times 1}}{{{0}}^{{2}}}{{ m/s}}$
The relationship between the wavelength and the frequency is given by the formula:
${{\upsilon = }}\dfrac{{{v}}}{{{\lambda }}}$
For microwave, the relation between wavelength and the frequency can be modified by using above formula as:
$\Rightarrow {{{\upsilon }}_{{m}}}{{ = }}\dfrac{{{{{v}}_{{m}}}}}{{{{{\lambda }}_{{m}}}}}$
Similarly, for ultrasonic waves we have
$\Rightarrow {{{\upsilon }}_{{u}}}{{ = }}\dfrac{{{{{v}}_{{u}}}}}{{{{{\lambda }}_{{u}}}}}$
It is given that microwave and an ultrasonic sound wave have the same wavelength i.e. $\Rightarrow {{{\lambda }}_{{m}}}{{ = }}{{{\lambda }}_{{u}}}{{ = \lambda }}$ so ${{{\upsilon }}_{{m}}}{{ = }}\dfrac{{{{{v}}_{{m}}}}}{{{\lambda }}}$ and ${{{\upsilon }}_{{u}}}{{ = }}\dfrac{{{{{v}}_{{u}}}}}{{{{{\lambda }}_{{u}}}}}$
Now, the ratio of the frequencies of a microwave and an ultrasonic sound wave is given by
$\Rightarrow \dfrac{{{{{\upsilon }}_{{m}}}}}{{{{{\upsilon }}_{{u}}}}}{{ = }}\dfrac{{\dfrac{{{{{v}}_{{m}}}}}{{{\lambda }}}}}{{\dfrac{{{{{v}}_{{u}}}}}{{{\lambda }}}}}$
Or $\dfrac{{{{{\upsilon }}_{{m}}}}}{{{{{\upsilon }}_{{u}}}}}{{ = }}\dfrac{{\dfrac{{{{{v}}_{{m}}}}}{{{1}}}}}{{\dfrac{{{{{v}}_{{u}}}}}{{{1}}}}}{{ }} \\
\therefore \dfrac{{{{{\upsilon }}_{{m}}}}}{{{{{\upsilon }}_{{u}}}}}{{ = }}\dfrac{{{{{v}}_{{m}}}}}{{{{{v}}_{{u}}}}} $
On substituting the values in above relation, we get
$\Rightarrow \dfrac{{{{{\upsilon }}_{{m}}}}}{{{{{\upsilon }}_{{u}}}}}{{ = }}\dfrac{{3 \times {{10}^8}}}{{3 \times {{10}^2}}} = {10^6}$
Thus, the ratio of the frequencies of a microwave and an ultrasonic sound wave is ${10^6}$.
Therefore, option (C) is the correct choice.
Note: The SI unit of velocity is ${{m/s}}$. The SI unit of frequency is hertz (${{Hz}}$). The SI unit of wavelength is meter (${{m}}$). As the SI unit of frequency is hertz (${{Hz}}$) but in the answer no SI unit is mentioned. It is so because the ratio of frequencies of both the electromagnetic waves are given so it is a unit less quantity.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
