
A moving particle is associated with a wave packet or group of waves. The group velocity is equal to:
A) Velocity of light
B) Velocity of sound
C) Velocity of particle
D) 1/Velocity of particle
Answer
217.2k+ views
Hint: Phase velocity is the speed at which a wave of constant phase travels as the wave propagates. Group velocity, ${v_g}$ , is the ratio of the apparent change in frequency \[\omega \] to the associated change in the phase propagation constant \[\beta \]; that is, $\dfrac{{\Delta \omega }}{{\Delta \beta {\text{ }}.}}$
Complete step by step answer:
According to the theory of wave mechanics developed by Schrodinger a material is associated with a very distinct property called wave packet. A wave packet is a form of wave function that has a well-defined position as well as momentum. Thus wave packets tend to behave classically and are easy (and fun) to visualize. Naturally, neither the momentum nor the position is precisely defined, as is governed by the uncertainty principle.
A wave packet with a very well-defined position will have a very uncertain momentum, and thus will quickly disperse as the faster components move on ahead of the slower ones. Conversely, if we construct a wave packet with a very definite momentum it will travel a long distance without dispersing, but it starts out being very broad already in position space.
The group velocity of the particle on the other hand always represents the velocity of the particle. Thus, group velocity is equal to the velocity of the particle.
Note: If the phase velocity does not depend on the wavelength of the propagating wave, then ${v_g} = {v_p}$ For example, sound waves are non-dispersive in air, i.e., all the individual components that make up the sound wave travel at same speed. Phase velocity of sound waves is independent of the wavelength when it propagates in air.
Complete step by step answer:
According to the theory of wave mechanics developed by Schrodinger a material is associated with a very distinct property called wave packet. A wave packet is a form of wave function that has a well-defined position as well as momentum. Thus wave packets tend to behave classically and are easy (and fun) to visualize. Naturally, neither the momentum nor the position is precisely defined, as is governed by the uncertainty principle.
A wave packet with a very well-defined position will have a very uncertain momentum, and thus will quickly disperse as the faster components move on ahead of the slower ones. Conversely, if we construct a wave packet with a very definite momentum it will travel a long distance without dispersing, but it starts out being very broad already in position space.
The group velocity of the particle on the other hand always represents the velocity of the particle. Thus, group velocity is equal to the velocity of the particle.
Note: If the phase velocity does not depend on the wavelength of the propagating wave, then ${v_g} = {v_p}$ For example, sound waves are non-dispersive in air, i.e., all the individual components that make up the sound wave travel at same speed. Phase velocity of sound waves is independent of the wavelength when it propagates in air.
Recently Updated Pages
Addition of Three Vectors: Methods & Examples

Addition of Vectors: Simple Guide for Students

Algebra Made Easy: Step-by-Step Guide for Students

Relations and Functions: Complete Guide for Students

Analytical Method of Vector Addition Explained Simply

Arithmetic, Geometric & Harmonic Progressions Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

