A moving particle is associated with a wave packet or group of waves. The group velocity is equal to:
A) Velocity of light
B) Velocity of sound
C) Velocity of particle
D) 1/Velocity of particle
Answer
Verified
120.3k+ views
Hint: Phase velocity is the speed at which a wave of constant phase travels as the wave propagates. Group velocity, ${v_g}$ , is the ratio of the apparent change in frequency \[\omega \] to the associated change in the phase propagation constant \[\beta \]; that is, $\dfrac{{\Delta \omega }}{{\Delta \beta {\text{ }}.}}$
Complete step by step answer:
According to the theory of wave mechanics developed by Schrodinger a material is associated with a very distinct property called wave packet. A wave packet is a form of wave function that has a well-defined position as well as momentum. Thus wave packets tend to behave classically and are easy (and fun) to visualize. Naturally, neither the momentum nor the position is precisely defined, as is governed by the uncertainty principle.
A wave packet with a very well-defined position will have a very uncertain momentum, and thus will quickly disperse as the faster components move on ahead of the slower ones. Conversely, if we construct a wave packet with a very definite momentum it will travel a long distance without dispersing, but it starts out being very broad already in position space.
The group velocity of the particle on the other hand always represents the velocity of the particle. Thus, group velocity is equal to the velocity of the particle.
Note: If the phase velocity does not depend on the wavelength of the propagating wave, then ${v_g} = {v_p}$ For example, sound waves are non-dispersive in air, i.e., all the individual components that make up the sound wave travel at same speed. Phase velocity of sound waves is independent of the wavelength when it propagates in air.
Complete step by step answer:
According to the theory of wave mechanics developed by Schrodinger a material is associated with a very distinct property called wave packet. A wave packet is a form of wave function that has a well-defined position as well as momentum. Thus wave packets tend to behave classically and are easy (and fun) to visualize. Naturally, neither the momentum nor the position is precisely defined, as is governed by the uncertainty principle.
A wave packet with a very well-defined position will have a very uncertain momentum, and thus will quickly disperse as the faster components move on ahead of the slower ones. Conversely, if we construct a wave packet with a very definite momentum it will travel a long distance without dispersing, but it starts out being very broad already in position space.
The group velocity of the particle on the other hand always represents the velocity of the particle. Thus, group velocity is equal to the velocity of the particle.
Note: If the phase velocity does not depend on the wavelength of the propagating wave, then ${v_g} = {v_p}$ For example, sound waves are non-dispersive in air, i.e., all the individual components that make up the sound wave travel at same speed. Phase velocity of sound waves is independent of the wavelength when it propagates in air.
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching
Difference Between Mass and Weight
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
Sign up for JEE Main 2025 Live Classes - Vedantu
JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address
Trending doubts
JEE Mains 2025: Check Important Dates, Syllabus, Exam Pattern, Fee and Updates
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main Chemistry Exam Pattern 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line