
A particle is given an initial speed $u$ inside a smooth spherical shell of radius $R = 1m$ such that it is just able to complete the circle. Acceleration of the particle when its velocity is vertical is:

A) $g\sqrt {10} $
B) $g$
C) $g\sqrt 2 $
D) \[g\sqrt 6 \]
Answer
233.1k+ views
Hint: To solve this question, we have to calculate the resultant of the tangential and centripetal acceleration. We all know the value of tangential acceleration which is equal to the value of acceleration due to gravity. The centripetal acceleration can be calculated by using velocity and the radius of the circle.
Formulae used:
${v_l} = \sqrt {5gl} $
Here ${v_l}$ is the velocity at the lowest point, $g$ is the acceleration due to gravity and $l$ is distance from center.
$a = \dfrac{{{v^2}}}{r}$
Here $a$ is the centripetal acceleration, $v$ is the tangential velocity at point B and $r$ is the radius of the circle.
Complete step by step solution:
We know that in a circle the velocity at the lowest most position will be,
${v_l} = \sqrt {5gl} $
Here ${v_l}$ is the velocity at the lowest point, $g$ is the acceleration due to gravity and $l$ is the distance.
So, $u = \sqrt {5gl} $

Applying conservation of energy at points A and B, we get
$ \Rightarrow \dfrac{1}{2}m{u^2} = \dfrac{1}{2}m{v^2} + m\left( - \right)gl$
Here $u$ is the velocity at point A, $v$ is the velocity at point B, $m$ is the mass of the box, $g$ is the acceleration due to gravity and $l$ is the distance from the center.
The negative sign in gravity is because of its downwards action.
Simplifying the equation, we get,
$ \Rightarrow {u^2} = {v^2} - 2gl$
Putting the value of $u$, we get
$ \Rightarrow {v^2} = {\left( {\sqrt {5gl} } \right)^2} - 2gl$
$ \Rightarrow {v^2} = 3gl$
$ \Rightarrow v = \sqrt {3gl} $
So the value of tangential velocity at point B is $\sqrt {3gl} $.
We know that,
$ \Rightarrow a = \dfrac{{{v^2}}}{r}$
Here $a$ is the centripetal acceleration, $v$ is the tangential velocity at point B and $r$ is the radius of the circle.
Putting the values of $v$ and $r$, we get
$ \Rightarrow a = 3g$

From the above diagram, the resultant acceleration acting on the body will be,
$ \Rightarrow {a_{net}} = \sqrt {{a^2} + {g^2} + 2ag\cos 90^\circ } $
$ \Rightarrow {a_{net}} = \sqrt {{a^2} + {g^2}} $
Putting the value of $a = 3g$ we get,
$ \Rightarrow {a_{net}} = \sqrt {9{g^2} + {g^2}} = g\sqrt {10} $
So the net acceleration acting on the body will be $g\sqrt {10} $.
Hence option (A) is the correct option.
Note: In a vertical circle,
1. The velocity at the lower most position is $v = \sqrt {5gl} $
2. The velocity at the horizontal position is $v = \sqrt {3gl} $
3. The velocity at the top most position is $v = \sqrt {gl} $
Here $g$ is the acceleration due to gravity and $l$ is the distance from the centre. Also for particles in a vertical circle, both centripetal acceleration and acceleration due to gravity acts on it.
Formulae used:
${v_l} = \sqrt {5gl} $
Here ${v_l}$ is the velocity at the lowest point, $g$ is the acceleration due to gravity and $l$ is distance from center.
$a = \dfrac{{{v^2}}}{r}$
Here $a$ is the centripetal acceleration, $v$ is the tangential velocity at point B and $r$ is the radius of the circle.
Complete step by step solution:
We know that in a circle the velocity at the lowest most position will be,
${v_l} = \sqrt {5gl} $
Here ${v_l}$ is the velocity at the lowest point, $g$ is the acceleration due to gravity and $l$ is the distance.
So, $u = \sqrt {5gl} $

Applying conservation of energy at points A and B, we get
$ \Rightarrow \dfrac{1}{2}m{u^2} = \dfrac{1}{2}m{v^2} + m\left( - \right)gl$
Here $u$ is the velocity at point A, $v$ is the velocity at point B, $m$ is the mass of the box, $g$ is the acceleration due to gravity and $l$ is the distance from the center.
The negative sign in gravity is because of its downwards action.
Simplifying the equation, we get,
$ \Rightarrow {u^2} = {v^2} - 2gl$
Putting the value of $u$, we get
$ \Rightarrow {v^2} = {\left( {\sqrt {5gl} } \right)^2} - 2gl$
$ \Rightarrow {v^2} = 3gl$
$ \Rightarrow v = \sqrt {3gl} $
So the value of tangential velocity at point B is $\sqrt {3gl} $.
We know that,
$ \Rightarrow a = \dfrac{{{v^2}}}{r}$
Here $a$ is the centripetal acceleration, $v$ is the tangential velocity at point B and $r$ is the radius of the circle.
Putting the values of $v$ and $r$, we get
$ \Rightarrow a = 3g$

From the above diagram, the resultant acceleration acting on the body will be,
$ \Rightarrow {a_{net}} = \sqrt {{a^2} + {g^2} + 2ag\cos 90^\circ } $
$ \Rightarrow {a_{net}} = \sqrt {{a^2} + {g^2}} $
Putting the value of $a = 3g$ we get,
$ \Rightarrow {a_{net}} = \sqrt {9{g^2} + {g^2}} = g\sqrt {10} $
So the net acceleration acting on the body will be $g\sqrt {10} $.
Hence option (A) is the correct option.
Note: In a vertical circle,
1. The velocity at the lower most position is $v = \sqrt {5gl} $
2. The velocity at the horizontal position is $v = \sqrt {3gl} $
3. The velocity at the top most position is $v = \sqrt {gl} $
Here $g$ is the acceleration due to gravity and $l$ is the distance from the centre. Also for particles in a vertical circle, both centripetal acceleration and acceleration due to gravity acts on it.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

