Answer
Verified
112.8k+ views
Hint: We know that conservative force is path independent and non-conservative forces are path dependent. We must observe the work done by F along a curve to know the nature of the force.
Complete step by step answer We can consider a path and see how much work done if an applied force makes some displacement
As you can see in the diagram, a curve of unknown shape has force F acting along the tangent and is constant, so for small displacement dS,
Hence work done $W = \int\limits_0^S {\overrightarrow F d\overrightarrow S } = \int\limits_0^S {FdS\cos \theta } $ since F is constant.
$ \Rightarrow W = F\int\limits_0^S {dS} $so, the work done by force F is dependent on path
From the question we can see that the work done at every point of curve is dependent upon the path followed. If the work done is conservative in nature then, the force acting must be non-conservative.
Hence, option D. $\overrightarrow F $ must be non-conservative.
Additional information
Work done by a conservative force is recoverable and if within a system only conservative force acts then the system's kinetic and potential energy can change. It must be noted that the mechanical energy (that is the sum of kinetic and potential energy) remains the same. Some examples are magnetic force, elastic force, gravitational force, electrostatic force and so on. However, work done by non-conservative forces may lead to dissipation of energy in the form of heat energy and it is not recoverable completely. Examples are air resistance, viscous forces.
Note:
Conservative forces are central in nature. It means that these forces act along the line connecting the centers of the bodies like for example electrostatic and gravitational forces. Non-conservative forces are generally velocity dependent and have retarding nature.
Complete step by step answer We can consider a path and see how much work done if an applied force makes some displacement
As you can see in the diagram, a curve of unknown shape has force F acting along the tangent and is constant, so for small displacement dS,
Hence work done $W = \int\limits_0^S {\overrightarrow F d\overrightarrow S } = \int\limits_0^S {FdS\cos \theta } $ since F is constant.
$ \Rightarrow W = F\int\limits_0^S {dS} $so, the work done by force F is dependent on path
From the question we can see that the work done at every point of curve is dependent upon the path followed. If the work done is conservative in nature then, the force acting must be non-conservative.
Hence, option D. $\overrightarrow F $ must be non-conservative.
Additional information
Work done by a conservative force is recoverable and if within a system only conservative force acts then the system's kinetic and potential energy can change. It must be noted that the mechanical energy (that is the sum of kinetic and potential energy) remains the same. Some examples are magnetic force, elastic force, gravitational force, electrostatic force and so on. However, work done by non-conservative forces may lead to dissipation of energy in the form of heat energy and it is not recoverable completely. Examples are air resistance, viscous forces.
Note:
Conservative forces are central in nature. It means that these forces act along the line connecting the centers of the bodies like for example electrostatic and gravitational forces. Non-conservative forces are generally velocity dependent and have retarding nature.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Class 11 JEE Main Physics Mock Test 2025
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 5 Work Energy and Power
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line