A particle moves in a circle of radius 25 cm at 2 revolutions per second. The acceleration of the particle is _________${\pi ^2}m/{s^2}$.
Answer
Verified
411.4k+ views
Hint: We will use the concept of centripetal acceleration to solve that question. Expression of centripetal acceleration is given by: $a = \dfrac{{{\omega ^2}}}{r}$, where $\omega $ is the angular velocity and r is the circular trajectory radius.
Formula used: $a = \dfrac{{{\omega ^2}}}{r}$ and $\omega $= $2\pi f$.
Complete step-by-step solution -
As we know, an acceleration that is guided along the radius towards the middle of the circular path acts on a body undergoing uniform circular motion. That acceleration is called centripetal acceleration.
The magnitude of a particle's acceleration moving in a circular motion is given by,
$a = \dfrac{{{\omega ^2}}}{r}$.
This being so, radius r = 25 cm and frequency = 2 revolutions per second.
We remember, angular speed, $\omega $= $2\pi f$
$ \Rightarrow \omega = 2\pi \times 2 = 4\pi rad/\sec $.
Radius = 25cm = $\dfrac{{25}}{{100}}m = 0.25m$.
Still, Centripetal acceleration,
$ \Rightarrow a = {\omega ^2}r$
Putting all the values given in this equation, we get
$
\Rightarrow a = {(4\pi )^2} \times 0.25m{s^{ - 2}} \\
\Rightarrow a = 4{\pi ^2}m{s^{ - 2}} \\
$
Then the particle's acceleration is $4{\pi ^2}m{s^{ - 2}}$.
Note: First we need to remember some basic points of uniform circular motion in this type of problem. We'll then use the relationship between angular velocity and angular acceleration to resolve the problem. Through this relationship, when the frequency and radius of the circular path is given we can easily find both of them. We can get the required response through this.
Formula used: $a = \dfrac{{{\omega ^2}}}{r}$ and $\omega $= $2\pi f$.
Complete step-by-step solution -
As we know, an acceleration that is guided along the radius towards the middle of the circular path acts on a body undergoing uniform circular motion. That acceleration is called centripetal acceleration.
The magnitude of a particle's acceleration moving in a circular motion is given by,
$a = \dfrac{{{\omega ^2}}}{r}$.
This being so, radius r = 25 cm and frequency = 2 revolutions per second.
We remember, angular speed, $\omega $= $2\pi f$
$ \Rightarrow \omega = 2\pi \times 2 = 4\pi rad/\sec $.
Radius = 25cm = $\dfrac{{25}}{{100}}m = 0.25m$.
Still, Centripetal acceleration,
$ \Rightarrow a = {\omega ^2}r$
Putting all the values given in this equation, we get
$
\Rightarrow a = {(4\pi )^2} \times 0.25m{s^{ - 2}} \\
\Rightarrow a = 4{\pi ^2}m{s^{ - 2}} \\
$
Then the particle's acceleration is $4{\pi ^2}m{s^{ - 2}}$.
Note: First we need to remember some basic points of uniform circular motion in this type of problem. We'll then use the relationship between angular velocity and angular acceleration to resolve the problem. Through this relationship, when the frequency and radius of the circular path is given we can easily find both of them. We can get the required response through this.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids