Answer
Verified
110.7k+ views
Hint: To calculate the average speed, we have to calculate the total distance covered and the total time taken to cover the distance. With that, we can calculate the average speed with the formula,
$s = \dfrac{D}{T}$
where D = total distance in metres and T = total time in seconds.
Complete step by step answer:
The average is defined as a number that expresses the central value, which is calculated by the sum of the values divided by the total number of values.
If a, b, c are three numbers, the average of these numbers is given by –
$A = \dfrac{{a + b + c}}{3}$
Speed is defined as the rate of change of distance per unit time.
$s = \dfrac{d}{t}$
If the speed is not constant and it keeps varying with time, we have to consider the average speed.
The average speed is used to understand the rate at which the object is moving. Mathematically, if the distance ${d_1}$ is covered in time ${t_1}$, distance ${d_2}$ is covered in time ${t_2}$ and distance ${d_3}$ is covered in time ${t_3}$, the average speed is given by –
$s = \dfrac{{{d_1} + {d_2} + {d_3}}}{{{t_1} + {t_2} + {t_3}}}$
Consider a particle moving in a straight line. Let $x$ be the total distance covered by the particle.
Half of the distance i.e. $\dfrac{x}{2}$ is covered with the speed of $3m{s^{ - 1}}$. The time taken to cover this distance is given by –
${t_1} = \dfrac{{{d_1}}}{{{s_1}}} = \dfrac{{\dfrac{x}{2}}}{3} = \dfrac{x}{6}$
The other half of the distance i.e. $\dfrac{x}{2}$ is covered with the speed of $6m{s^{ - 1}}$. The time taken to cover this distance is given by –
${t_2} = \dfrac{{{d_2}}}{{{s_2}}} = \dfrac{{\dfrac{x}{2}}}{6} = \dfrac{x}{{12}}$
Thus,
Total distance travelled = $x$
Total time taken, = ${t_1} + {t_2} = \dfrac{x}{6} + \dfrac{x}{{12}} = \dfrac{{3x}}{{12}} = \dfrac{x}{4}$
The average speed, $S = \dfrac{x}{{{t_1} + {t_2}}} = \dfrac{x}{{\dfrac{x}{4}}} = 4m{s^{ - 1}}$
Hence, the correct option is Option (B).
Note: While the average speed gives us an overall picture of how fast the object is moving, the actual speed of the object in its journey will be constantly changing every instant of time. This type of speed is called instantaneous speed and is given by:
$s = \mathop {\lim }\limits_{x \to 0} \dfrac{{\Delta x}}{{\Delta t}} = \dfrac{{dx}}{{dt}}$
$s = \dfrac{D}{T}$
where D = total distance in metres and T = total time in seconds.
Complete step by step answer:
The average is defined as a number that expresses the central value, which is calculated by the sum of the values divided by the total number of values.
If a, b, c are three numbers, the average of these numbers is given by –
$A = \dfrac{{a + b + c}}{3}$
Speed is defined as the rate of change of distance per unit time.
$s = \dfrac{d}{t}$
If the speed is not constant and it keeps varying with time, we have to consider the average speed.
The average speed is used to understand the rate at which the object is moving. Mathematically, if the distance ${d_1}$ is covered in time ${t_1}$, distance ${d_2}$ is covered in time ${t_2}$ and distance ${d_3}$ is covered in time ${t_3}$, the average speed is given by –
$s = \dfrac{{{d_1} + {d_2} + {d_3}}}{{{t_1} + {t_2} + {t_3}}}$
Consider a particle moving in a straight line. Let $x$ be the total distance covered by the particle.
Half of the distance i.e. $\dfrac{x}{2}$ is covered with the speed of $3m{s^{ - 1}}$. The time taken to cover this distance is given by –
${t_1} = \dfrac{{{d_1}}}{{{s_1}}} = \dfrac{{\dfrac{x}{2}}}{3} = \dfrac{x}{6}$
The other half of the distance i.e. $\dfrac{x}{2}$ is covered with the speed of $6m{s^{ - 1}}$. The time taken to cover this distance is given by –
${t_2} = \dfrac{{{d_2}}}{{{s_2}}} = \dfrac{{\dfrac{x}{2}}}{6} = \dfrac{x}{{12}}$
Thus,
Total distance travelled = $x$
Total time taken, = ${t_1} + {t_2} = \dfrac{x}{6} + \dfrac{x}{{12}} = \dfrac{{3x}}{{12}} = \dfrac{x}{4}$
The average speed, $S = \dfrac{x}{{{t_1} + {t_2}}} = \dfrac{x}{{\dfrac{x}{4}}} = 4m{s^{ - 1}}$
Hence, the correct option is Option (B).
Note: While the average speed gives us an overall picture of how fast the object is moving, the actual speed of the object in its journey will be constantly changing every instant of time. This type of speed is called instantaneous speed and is given by:
$s = \mathop {\lim }\limits_{x \to 0} \dfrac{{\Delta x}}{{\Delta t}} = \dfrac{{dx}}{{dt}}$
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main