Answer
Verified
99.9k+ views
Hint: In the given question, an object of a given mass is colliding with another identical mass at rest. We have been told that the collision will be elastic; that means both the energy and the momentum of the particles before and after the collision will be conserved. So to obtain the required result, we will apply momentum conservation on the two particles.
Complete step by step solution:
Since in the given question, the masses are the same and the collision is elastic; when we apply conservation of momentum on the particles, the momentum of the first mass will be transferred to the second mass particle. Since the masses are identical, transferred momentum means that the second mass will acquire the velocity of the first particle.
The second particle will continue moving with the same velocity, along the same line of motion as the first particle. The first particle, having transferred the momentum to the second particle, will come to rest after the collision.
We can say that the angle between the velocities of the particles after the collision will be zero.
Therefore, option (D) is the correct answer to the given question.
Note:
In the given question, the particle suffers an elastic collision with another identical particle and hence comes to rest after collision. If the particle had collided with a wall or any rigid body, it would have retraced its path with the same velocity with which it collided with the wall. Whereas, if the particle suffers an inelastic collision, it sticks to the other particle and behaves as a combined mass system.
Complete step by step solution:
Since in the given question, the masses are the same and the collision is elastic; when we apply conservation of momentum on the particles, the momentum of the first mass will be transferred to the second mass particle. Since the masses are identical, transferred momentum means that the second mass will acquire the velocity of the first particle.
The second particle will continue moving with the same velocity, along the same line of motion as the first particle. The first particle, having transferred the momentum to the second particle, will come to rest after the collision.
We can say that the angle between the velocities of the particles after the collision will be zero.
Therefore, option (D) is the correct answer to the given question.
Note:
In the given question, the particle suffers an elastic collision with another identical particle and hence comes to rest after collision. If the particle had collided with a wall or any rigid body, it would have retraced its path with the same velocity with which it collided with the wall. Whereas, if the particle suffers an inelastic collision, it sticks to the other particle and behaves as a combined mass system.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main