A particle starting from rest undergoes a rectilinear motion with acceleration\[a\]. The variation of \[a\]with time is shown below. The maximum velocity attained by the particle during its motion is
A) \[120\,m\]/\[s\]
B) \[60\,m\]/\[s\]
C) \[22\,m\]/\[s\]
D) \[80\,m\]/\[s\]
Answer
Verified
116.1k+ views
Hint: In this question, we have to find the maximum velocity during the rectilinear motion with acceleration\[a\]. For that we have to find the area under the curve where acceleration \[a\]has the maximum value
Complete step by step answer:
In this question, we have to find the maximum velocity during the rectilinear motion with acceleration (\[a\])
Since, we know that
\[a = \dfrac{{dv}}{{dt}}\]
Or we can write the above equation as,
\[v = \int {a.dt} \]
Therefore, for finding the maximum velocity we have to find the area under the curve where \[a\]is maximum
As we can see in the graph the maximum value of a is \[10\,m\]/\[s\]
Now, since the graph is in the form of triangle, area under the curve will be, \[\dfrac{1}{2} \times X - axis\, \times \,Y - axis\]
On putting the values we get,
\[\dfrac{1}{2} \times 10\, \times \,12 = 60\]
Hence, the maximum velocity during the rectilinear motion with acceleration (\[a\]) will be \[60\,m\]/\[{s^2}\]
Note: For this type of question, the best method to solve is to find the area under the curve for the required intervals by integration or else we can do it by the normal method as we did in the above question.
Complete step by step answer:
In this question, we have to find the maximum velocity during the rectilinear motion with acceleration (\[a\])
Since, we know that
\[a = \dfrac{{dv}}{{dt}}\]
Or we can write the above equation as,
\[v = \int {a.dt} \]
Therefore, for finding the maximum velocity we have to find the area under the curve where \[a\]is maximum
As we can see in the graph the maximum value of a is \[10\,m\]/\[s\]
Now, since the graph is in the form of triangle, area under the curve will be, \[\dfrac{1}{2} \times X - axis\, \times \,Y - axis\]
On putting the values we get,
\[\dfrac{1}{2} \times 10\, \times \,12 = 60\]
Hence, the maximum velocity during the rectilinear motion with acceleration (\[a\]) will be \[60\,m\]/\[{s^2}\]
Note: For this type of question, the best method to solve is to find the area under the curve for the required intervals by integration or else we can do it by the normal method as we did in the above question.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Which of the following is the smallest unit of length class 11 physics JEE_Main
Ideal and Non-Ideal Solutions Raoult's Law - JEE
Clemmenson and Wolff Kishner Reductions for JEE
Current Loop as Magnetic Dipole and Its Derivation for JEE
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids
NCERT Solutions for Class 11 Physics Chapter 5 Work Energy and Power
JEE Advanced 2025 Revision Notes for Physics on Modern Physics
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Collision - Important Concepts and Tips for JEE
JEE Main 2023 January 30 Shift 2 Question Paper with Answer Keys & Solutions