
A pendulum with a time period of 1 sec is losing energy due to damping. At a certain time its energy is 45J. If after completing 15 oscillations, its energy has become 15 J its damping constant (in ${s^{ - 1}}$) is:A) $\dfrac{1}{2}$ B) $\dfrac{1}{{15}}\ln 3$ C) $\dfrac{1}{{30}}\ln 3$ D) 2
Answer
141.9k+ views
Hint: In case of pendulum oscillating with decreasing amplitude/damping oscillation due to a damping force being applied on it loses energy gradually due loss of amplitude at an exponential rate.
Formula Used:
Complete step by step answer:
Additional Information:
Note: At any instant the total energy of a system is generally the sum of its kinetic and potential energies. Also the total energy is equal to the maximum potential energy and maximum kinetic energy. In this problem we used this trick of writing the complete energy as maximum potential energy, which is obtained when amplitude is maximum.
Formula Used:
${A_t} = {A_0}{e^{ - bt/2m}}$
${A_t}$ : Amplitude of oscillation at time ${t}$
${A_0}$ : Amplitude of oscillation at time ${t=0}$
$\dfrac{b}{m}$ : damping coefficient
Step-1:
A simple pendulum oscillating with initial amplitude of motion as ${A_o}$ is decreased in the presence of dissipative forces after time ‘t’ it is given as,
${A_t} = {A_0}{e^{ - bt/2m}}$ ………… (1)
Where $b/m$ is the damping constant.
Step-2:
Now the Initial energy of oscillation can be given as
${E_0} = \dfrac{1}{2}k{A_0}^2 = 45J$ (assuming complete energy in form of potential energy)
Here, [K = constant]
And after time t =15 secs that is after 15 oscillations (as period of oscillation is 1 second) its energy will be
${E_t} = \dfrac{1}{2}K{({A_0}{e^{ - bt/2m}})^2} = 15J$
Using equation (1) in above relation ${A_t} = {A_0}{e^{ - bt/2m}}$
${E_t} = \dfrac{1}{2}K{A_0}^2{e^{ - 2bt/2m}}$
Submitting values now we have
$15 = 45{e^{ - bt/m}}$
$\Rightarrow \dfrac{1}{3} = {e^{ - 15b/m}}$
Taking logarithm both sides $\ln \dfrac{1}{3} = - 15\dfrac{b}{m}$
$ - \ln (3) = - 15\dfrac{b}{m}$
Therefore, $\dfrac{b}{m} = \dfrac{{\ln (3)}}{{15}}$ is the answer.
Hence, option (B) is correct.
A system may be so damped that it cannot vibrate. There are many types of mechanical damping. Friction, also called in this context dry, or Coulomb, damping, arises chiefly from the electrostatic forces of attraction between the sliding surfaces and converts mechanical energy of motion, or kinetic energy, into heat.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

Difference Between Mass and Weight

Difference Between Circuit Switching and Packet Switching

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
