
A person sitting in an open car moving at constant velocity throws a ball vertically upwards in air. If effect of air resistance is neglected, the ball will fall
(A) Exactly in the hands of the person
(B) Outside the car
(C) In the car behind the person
(D) In the car ahead of the person
Answer
232.8k+ views
Hint: We will find the distance travelled by the car and the ball in time t using the equation of motion, \[{\text{s = ut + }}\dfrac{{\text{1}}}{{\text{2}}}{\text{a}}{{\text{t}}^{\text{2}}}\] . Then, we will compare both the distances and accordingly we will select the correct option.
Complete step by step answer
Let the velocity of the ball be, v and the velocity of the car be u.
Here the velocity of the car will also be the horizontal velocity of the ball.
Now, let’s calculate the distance travelled by the car in time, t. For this, we will use the second equation of motion.
$s = ut + \dfrac{1}{2}a{t^2}$
Since the car is moving with a constant velocity, acceleration will be zero. Therefore, the distance travelled by the car in time t.
$s = ut + \dfrac{1}{2} \times 0 \times {t^2}$
$ \Rightarrow s = ut$
Similarly, considering that the horizontal velocity of the ball is u. the distance travelled by the ball in time, t will also be s = ut.
This means that the ball will cover the same distance as that of the car in time, t. Hence, the ball will land in the hands of the person who threw the ball.
So, option (A) is the correct answer.
Note It is clearly mentioned in the question that the car is moving with a constant velocity which means that no pseudo force will act on the ball when it is thrown upwards in the air. It is possible that one may get confused and try to solve this kind of question by taking into consideration pseudo force.
Complete step by step answer
Let the velocity of the ball be, v and the velocity of the car be u.
Here the velocity of the car will also be the horizontal velocity of the ball.
Now, let’s calculate the distance travelled by the car in time, t. For this, we will use the second equation of motion.
$s = ut + \dfrac{1}{2}a{t^2}$
Since the car is moving with a constant velocity, acceleration will be zero. Therefore, the distance travelled by the car in time t.
$s = ut + \dfrac{1}{2} \times 0 \times {t^2}$
$ \Rightarrow s = ut$
Similarly, considering that the horizontal velocity of the ball is u. the distance travelled by the ball in time, t will also be s = ut.
This means that the ball will cover the same distance as that of the car in time, t. Hence, the ball will land in the hands of the person who threw the ball.
So, option (A) is the correct answer.
Note It is clearly mentioned in the question that the car is moving with a constant velocity which means that no pseudo force will act on the ball when it is thrown upwards in the air. It is possible that one may get confused and try to solve this kind of question by taking into consideration pseudo force.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

