
A person sitting in an open car moving at constant velocity throws a ball vertically upwards in air. If effect of air resistance is neglected, the ball will fall
(A) Exactly in the hands of the person
(B) Outside the car
(C) In the car behind the person
(D) In the car ahead of the person
Answer
219.9k+ views
Hint: We will find the distance travelled by the car and the ball in time t using the equation of motion, \[{\text{s = ut + }}\dfrac{{\text{1}}}{{\text{2}}}{\text{a}}{{\text{t}}^{\text{2}}}\] . Then, we will compare both the distances and accordingly we will select the correct option.
Complete step by step answer
Let the velocity of the ball be, v and the velocity of the car be u.
Here the velocity of the car will also be the horizontal velocity of the ball.
Now, let’s calculate the distance travelled by the car in time, t. For this, we will use the second equation of motion.
$s = ut + \dfrac{1}{2}a{t^2}$
Since the car is moving with a constant velocity, acceleration will be zero. Therefore, the distance travelled by the car in time t.
$s = ut + \dfrac{1}{2} \times 0 \times {t^2}$
$ \Rightarrow s = ut$
Similarly, considering that the horizontal velocity of the ball is u. the distance travelled by the ball in time, t will also be s = ut.
This means that the ball will cover the same distance as that of the car in time, t. Hence, the ball will land in the hands of the person who threw the ball.
So, option (A) is the correct answer.
Note It is clearly mentioned in the question that the car is moving with a constant velocity which means that no pseudo force will act on the ball when it is thrown upwards in the air. It is possible that one may get confused and try to solve this kind of question by taking into consideration pseudo force.
Complete step by step answer
Let the velocity of the ball be, v and the velocity of the car be u.
Here the velocity of the car will also be the horizontal velocity of the ball.
Now, let’s calculate the distance travelled by the car in time, t. For this, we will use the second equation of motion.
$s = ut + \dfrac{1}{2}a{t^2}$
Since the car is moving with a constant velocity, acceleration will be zero. Therefore, the distance travelled by the car in time t.
$s = ut + \dfrac{1}{2} \times 0 \times {t^2}$
$ \Rightarrow s = ut$
Similarly, considering that the horizontal velocity of the ball is u. the distance travelled by the ball in time, t will also be s = ut.
This means that the ball will cover the same distance as that of the car in time, t. Hence, the ball will land in the hands of the person who threw the ball.
So, option (A) is the correct answer.
Note It is clearly mentioned in the question that the car is moving with a constant velocity which means that no pseudo force will act on the ball when it is thrown upwards in the air. It is possible that one may get confused and try to solve this kind of question by taking into consideration pseudo force.
Recently Updated Pages
Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

States of Matter Chapter For JEE Main Chemistry

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

