When a person uses a convex lens as a simple magnifying glass, the object must be placed at a distance
A. less than one focal length
B. more than one focal length
C. less than twice the focal length
D. more than twice the focal length
Answer
Verified
118.8k+ views
Hint A magnifying is an optical device that uses a converging lens (such as a convex lens) to form a virtual, upright and magnified image. The only condition is that the object should be placed between the optical centre and the focus of the lens. The distance between the optical centre and the focus is called focal length of the lens.
Complete step by step answer
Let us first discuss magnifying glass.
A magnifying is an optical device that uses a converging lens (such as a convex lens) to form a virtual, upright and magnified image. The only condition is that the object should be placed between the optical centre and the focus of the lens.
So, if we want a magnified, virtual and erect image, we have to place the object not beyond the focal length of the convex lens. The distance between the optical centre and the focus is called focal length of the lens.
A ray diagram of formation of a magnified virtual and erect image using a convex lens is shown in the figure.
Here, ${S_1}$ is the distance of the object from the optical centre, ${S_2}$ is the distance of the image formed and $f$ is the focal length of the lens.
It is clearly seen from the ray diagram that the image formed is virtual, erect and has size larger than the object. It is formed behind the lens.
Therefore, when a person uses a convex lens as a simple magnifying glass, the object must be placed at a distance less than one focal length.
Hence, option A is correct.
Note Apart from the location of the object, the magnifying power or magnification of a magnifying glass also depends upon the place it is placed between the observer's eye and the object being viewed, and the total distance between them. The magnifying power is also equivalent to the angular magnification which is the ratio of the size of the image formed on the observer's retina with and without the lens.
Complete step by step answer
Let us first discuss magnifying glass.
A magnifying is an optical device that uses a converging lens (such as a convex lens) to form a virtual, upright and magnified image. The only condition is that the object should be placed between the optical centre and the focus of the lens.
So, if we want a magnified, virtual and erect image, we have to place the object not beyond the focal length of the convex lens. The distance between the optical centre and the focus is called focal length of the lens.
A ray diagram of formation of a magnified virtual and erect image using a convex lens is shown in the figure.
Here, ${S_1}$ is the distance of the object from the optical centre, ${S_2}$ is the distance of the image formed and $f$ is the focal length of the lens.
It is clearly seen from the ray diagram that the image formed is virtual, erect and has size larger than the object. It is formed behind the lens.
Therefore, when a person uses a convex lens as a simple magnifying glass, the object must be placed at a distance less than one focal length.
Hence, option A is correct.
Note Apart from the location of the object, the magnifying power or magnification of a magnifying glass also depends upon the place it is placed between the observer's eye and the object being viewed, and the total distance between them. The magnifying power is also equivalent to the angular magnification which is the ratio of the size of the image formed on the observer's retina with and without the lens.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Degree of Dissociation and Its Formula With Solved Example for JEE
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics