
A photon of wavelength \[{\rm{4400}}\mathop {\rm{A}}\limits^{\rm{0}} \]is passing through the vacuum. The effective mass and momentum of the photon are respectively?
A. \[5 \times {10^{ - 36}}kg,1.5 \times {10^{ - 27}}kg - m{s^{ - 1}}\]
B. \[5 \times {10^{ - 25}}kg,1.5 \times {10^{ - 26}}kg - m{s^{ - 1}}\]
C. \[Zero,1.5 \times {10^{ - 26}}kg - m{s^{ - 1}}\]
D. \[5 \times {10^{ - 36}}kg,1.5 \times {10^{ - 43}}kg - m{s^{ - 1}}\]
Answer
141.3k+ views
Hint: Before we start addressing the problem, we need to know about the De-Broglie wavelength. The wavelength which is associated with an object in relation to its momentum and mass is known as the De-Broglie wavelength. It is an important concept in studying quantum mechanics and it deals with the matter waves.
Formula Used:
The formula for the De-Broglie wavelength is,
\[\lambda = \dfrac{h}{p}\]
Where, h is Planck’s constant and p is momentum.
Complete step by step solution:
Consider a photon of wavelength \[{\rm{4400}}\mathop {\rm{A}}\limits^{\rm{0}} \] that is passing through the vacuum. Then we need to find the effective mass and momentum of the photon. By the formula of De-Broglie wavelength, we can write,
\[\lambda = \dfrac{h}{{mv}}\]
Here, momentum \[p = mv\]
\[m = \dfrac{h}{{\lambda v}}\]
Now, substitute the value of Planck’s constant (h), velocity (v) and wavelength (\[\lambda \]) in the above equation, we get
\[m = \dfrac{{6.625 \times {{10}^{ - 34}}}}{{4400 \times {{10}^{ - 10}} \times 3 \times {{10}^8}}}\]
\[\Rightarrow v = 3 \times {10^8}\] (the speed of light in vacuum)
\[\Rightarrow m = 5 \times {10^{ - 36}}kg\]
Now, to find the momentum we have,
\[p = mv\]
\[\Rightarrow p = 5 \times {10^{ - 36}} \times 3 \times {10^8}\]
\[\therefore p = 1.5 \times {10^{ - 27}}kg - m{s^{ - 1}}\]
Therefore, the effective mass and momentum of the photon are \[5 \times {10^{ - 36}}kg,1.5 \times {10^{ - 27}}kg - m{s^{ - 1}}\].
Hence, option A is the correct answer.
Note:Wavelength is the distance between two crests or two troughs of the wave. It is a defining characteristic of a wave and it depends on the medium in which it is travelling. The wave changes its shape as it moves from one medium to another medium and the wavelength also changes. But the frequency does not change when the wave travels from one medium to another, that is it remains constant.
Formula Used:
The formula for the De-Broglie wavelength is,
\[\lambda = \dfrac{h}{p}\]
Where, h is Planck’s constant and p is momentum.
Complete step by step solution:
Consider a photon of wavelength \[{\rm{4400}}\mathop {\rm{A}}\limits^{\rm{0}} \] that is passing through the vacuum. Then we need to find the effective mass and momentum of the photon. By the formula of De-Broglie wavelength, we can write,
\[\lambda = \dfrac{h}{{mv}}\]
Here, momentum \[p = mv\]
\[m = \dfrac{h}{{\lambda v}}\]
Now, substitute the value of Planck’s constant (h), velocity (v) and wavelength (\[\lambda \]) in the above equation, we get
\[m = \dfrac{{6.625 \times {{10}^{ - 34}}}}{{4400 \times {{10}^{ - 10}} \times 3 \times {{10}^8}}}\]
\[\Rightarrow v = 3 \times {10^8}\] (the speed of light in vacuum)
\[\Rightarrow m = 5 \times {10^{ - 36}}kg\]
Now, to find the momentum we have,
\[p = mv\]
\[\Rightarrow p = 5 \times {10^{ - 36}} \times 3 \times {10^8}\]
\[\therefore p = 1.5 \times {10^{ - 27}}kg - m{s^{ - 1}}\]
Therefore, the effective mass and momentum of the photon are \[5 \times {10^{ - 36}}kg,1.5 \times {10^{ - 27}}kg - m{s^{ - 1}}\].
Hence, option A is the correct answer.
Note:Wavelength is the distance between two crests or two troughs of the wave. It is a defining characteristic of a wave and it depends on the medium in which it is travelling. The wave changes its shape as it moves from one medium to another medium and the wavelength also changes. But the frequency does not change when the wave travels from one medium to another, that is it remains constant.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

A point charge + 20mu C is at a distance 6cm directly class 12 physics JEE_Main

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
