A plane polarized monochromatic EM wave is traveling a vacuum along Z direction such that at t=t$_{1}$ it is found that at the electric field is zero at a spatial point z$_{1}$The next zero that occurs in its neighbourhood is at z$_{2}$The frequency of the electromagnetic wave is :
$\begin{align}
& A.\dfrac{3\times {{10}^{8}}}{|{{Z}_{2}}-{{Z}_{1}}|} \\
& B.\dfrac{6\times {{10}^{8}}}{|{{Z}_{2}}-{{Z}_{1}}|} \\
& C.\dfrac{1.5\times {{10}^{8}}}{|{{Z}_{2}}-{{Z}_{1}}|} \\
& D.\dfrac{1}{{{t}_{1}}+\dfrac{|{{Z}_{2}}-{{Z}_{1}}|}{3\times {{10}^{8}}}} \\
\end{align}$
Answer
Verified
116.4k+ views
Hint: We need to figure out the electric field at both time T, as both the values of E=0 at time t$_{1}$ and t$_{2}$, hence we can compare them to each other, now we represent the equation in such a way that it shows time t in terms of point z and speed of light.
Complete step-by-step answer:
As of the question we know that,
When time t= t$_{1}$and at point z$_{1}$ we are getting electric field E=0,
So, let us assume that, when time t= t$_{2}$, the wave is at point z$_{2}$, and E=0.
Now if we consider the equation of electric field,
$E={{E}_{\circ }}{{e}^{-(kz-\omega t)}}$ .${{E}_{\circ }}$is a constant,$\omega$ is the angular frequency, k is the wave number.
Now placing the value of point Z$_{1}$ at time t$_{1}$,
$E=0={{E}_{\circ }}{{e}^{-(k{{z}_{1}}-\omega {{t}_{1}})}}$………. Eq.1
Now placing the value of point Z$_{2}$ at time t$_{2}$,
$E=0={{E}_{\circ }}{{e}^{-(k{{z}_{2}}-\omega {{t}_{2}})}}$……….. Eq.2
On comparing eq.1 and eq.2 we get,
${{E}_{\circ }}{{e}^{-(k{{z}_{1}}-\omega {{t}_{1}})}}={{E}_{\circ }}{{e}^{-(k{{z}_{2}}-\omega {{t}_{2}})}}$
Here ${{E}_{\circ }}$ cancels out each other,
And as in both the sides base value is same hence we can write,
\[-k{{z}_{1}}-\omega {{t}_{1}}=-k{{z}_{2}}-\omega {{t}_{2}}\]
On further solving we get,
${{z}_{1}}-{{z}_{2}}=\dfrac{\omega }{k}({{t}_{1}}-{{t}_{2}})$ ……… eq.3
Where $\omega =2\pi f$,
And $k=\dfrac{2\pi }{\lambda }$ ,
Now putting the value of $\omega$ and k in eq.3,
${{z}_{1}}-{{z}_{2}}=\dfrac{2\pi f\lambda }{2\pi }({{t}_{1}}-{{t}_{2}})$,
We know that $c=f\lambda$ where c is the speed of light,
${{z}_{1}}-{{z}_{2}}=c({{t}_{1}}-{{t}_{2}})$,
We also know that frequency is inversely proportional to time,
Hence, we can represent the following equation in,
$\dfrac{{{z}_{1}}-{{z}_{2}}}{{{t}_{1}}-{{t}_{2}}}=c$,
Or,
$\dfrac{1}{{{t}_{1}}-{{t}_{2}}}=\dfrac{c}{{{z}_{1}}-{{z}_{2}}}$,
As said earlier, that frequency is inversely proportional to time so,
We can write that,
$f=\dfrac{c}{{{z}_{1}}-{{z}_{2}}}$,
Speed of light is, $3\times {{10}^{8}}m/s$
$f=\dfrac{3\times {{10}^{8}}}{{{z}_{1}}-{{z}_{2}}}$(Answer).
We see that our equation does not matches with any of the equation in the options, so we can apply mod operator,
$f=\dfrac{3\times {{10}^{8}}}{|{{z}_{1}}-{{z}_{2}}|}$,
Then ,
$f=\dfrac{3\times {{10}^{8}}}{|{{z}_{2}}-{{z}_{1}}|}$,
Therefore option A is the correct option.
Note: In the equation $E={{E}_{\circ }}{{e}^{-(kz-\omega t)}}$, z is the direction of propagation, frequency is inversely proportional to time, and $\omega$ is the angular frequency, and k is the wave number, c is the speed of light.
Complete step-by-step answer:
As of the question we know that,
When time t= t$_{1}$and at point z$_{1}$ we are getting electric field E=0,
So, let us assume that, when time t= t$_{2}$, the wave is at point z$_{2}$, and E=0.
Now if we consider the equation of electric field,
$E={{E}_{\circ }}{{e}^{-(kz-\omega t)}}$ .${{E}_{\circ }}$is a constant,$\omega$ is the angular frequency, k is the wave number.
Now placing the value of point Z$_{1}$ at time t$_{1}$,
$E=0={{E}_{\circ }}{{e}^{-(k{{z}_{1}}-\omega {{t}_{1}})}}$………. Eq.1
Now placing the value of point Z$_{2}$ at time t$_{2}$,
$E=0={{E}_{\circ }}{{e}^{-(k{{z}_{2}}-\omega {{t}_{2}})}}$……….. Eq.2
On comparing eq.1 and eq.2 we get,
${{E}_{\circ }}{{e}^{-(k{{z}_{1}}-\omega {{t}_{1}})}}={{E}_{\circ }}{{e}^{-(k{{z}_{2}}-\omega {{t}_{2}})}}$
Here ${{E}_{\circ }}$ cancels out each other,
And as in both the sides base value is same hence we can write,
\[-k{{z}_{1}}-\omega {{t}_{1}}=-k{{z}_{2}}-\omega {{t}_{2}}\]
,
On further solving we get,
${{z}_{1}}-{{z}_{2}}=\dfrac{\omega }{k}({{t}_{1}}-{{t}_{2}})$ ……… eq.3
Where $\omega =2\pi f$,
And $k=\dfrac{2\pi }{\lambda }$ ,
Now putting the value of $\omega$ and k in eq.3,
${{z}_{1}}-{{z}_{2}}=\dfrac{2\pi f\lambda }{2\pi }({{t}_{1}}-{{t}_{2}})$,
We know that $c=f\lambda$ where c is the speed of light,
${{z}_{1}}-{{z}_{2}}=c({{t}_{1}}-{{t}_{2}})$,
We also know that frequency is inversely proportional to time,
Hence, we can represent the following equation in,
$\dfrac{{{z}_{1}}-{{z}_{2}}}{{{t}_{1}}-{{t}_{2}}}=c$,
Or,
$\dfrac{1}{{{t}_{1}}-{{t}_{2}}}=\dfrac{c}{{{z}_{1}}-{{z}_{2}}}$,
As said earlier, that frequency is inversely proportional to time so,
We can write that,
$f=\dfrac{c}{{{z}_{1}}-{{z}_{2}}}$,
Speed of light is, $3\times {{10}^{8}}m/s$
$f=\dfrac{3\times {{10}^{8}}}{{{z}_{1}}-{{z}_{2}}}$(Answer).
We see that our equation does not matches with any of the equation in the options, so we can apply mod operator,
$f=\dfrac{3\times {{10}^{8}}}{|{{z}_{1}}-{{z}_{2}}|}$,
Then ,
$f=\dfrac{3\times {{10}^{8}}}{|{{z}_{2}}-{{z}_{1}}|}$,
Therefore option A is the correct option.
Note: In the equation $E={{E}_{\circ }}{{e}^{-(kz-\omega t)}}$, z is the direction of propagation, frequency is inversely proportional to time, and $\omega$ is the angular frequency, and k is the wave number, c is the speed of light.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids