A planet is revolving around the sun in an elliptical orbit, its closest distance from sun is \[{r_{\min }}\], and farthest distance from sun is \[{r_{\max }}\]. If the orbital angular velocity of planet when it is nearest to sun is \[\omega \], then orbital angular velocity at the point when it is at the farthest distance of sun is
A) \[\omega \sqrt {\dfrac{{{r_{\min }}}}{{{r_{\max }}}}} \]
B) \[\omega \sqrt {\dfrac{{{r_{\max }}}}{{{r_{\min }}}}} \]
C) \[\omega {\left( {\dfrac{{{r_{\max }}}}{{{r_{\min }}}}} \right)^2}\]
D) \[\omega {\left( {\dfrac{{{r_{\min }}}}{{{r_{\max }}}}} \right)^2}\]
Answer
Verified
116.4k+ views
Hint: As there is no external torque so the angular momentum is conserved, that means \[L = \omega {r^2}\]is constant on all the path of elliptical orbit where is \[\omega \] angular velocity of the way and \[r\] is distance of that point from sun.
Complete step by step answer:
As we are given in question with minimum distance of sun as, \[{r_{\min }}\]
and we are also given with maximum distance as, \[{r_{\max }}\]
and with angular velocity at min. distance as, \[\omega \]
and to find angular velocity at max. distance as, \[{\omega _1}\]
so we know the angular momentum is conserved so we have
\[L = {L_1}\]
\[\omega {{r^2}_{\min }} = {\omega _1}{{r^2}_{\max }}\]
\[{\omega _1} = \dfrac{{\omega {{r^2}_{\min }}}}{{{{r^2}_{\max }}}}\]
So we get angular velocity at maximum distance as \[\dfrac{{\omega {{r^2}_{\min }}}}{{{{r^2}_{\max }}}}\].
So, The correct option is D.
Additional information:
An important role is played by Johannes Kepler, the physicist who gave us the three laws of planetary motion. The three laws are:
The law of ellipses:
The path of the planets about the sun is elliptical in shape, with the centre of the sun being located at one focus.
The law of equal areas:
An imaginary line drawn from the centre of the sun to the centre of the planet will sweep out equal areas in equal intervals of time.
The Law of Harmonies:
The ratio of the squares of the periods of any two planets is equal to the ratio of the cubes of their average distances from the sun.
It was his second law, the law of equal areas which was further manipulated to find out that the angular momentum remains conserved during the whole planetary motion of a planet around the Sun.
Note: We know \[L = mvr\] and we can substitute \[v = \omega r\] so that we can make the formula \[L = m\omega {r^2}\]and \[m\] is constant and external torque is absent so we can say that angular momentum is constant and can calculate the angular velocity at any point on that path if we know the distance of that point from sun.
Complete step by step answer:
As we are given in question with minimum distance of sun as, \[{r_{\min }}\]
and we are also given with maximum distance as, \[{r_{\max }}\]
and with angular velocity at min. distance as, \[\omega \]
and to find angular velocity at max. distance as, \[{\omega _1}\]
so we know the angular momentum is conserved so we have
\[L = {L_1}\]
\[\omega {{r^2}_{\min }} = {\omega _1}{{r^2}_{\max }}\]
\[{\omega _1} = \dfrac{{\omega {{r^2}_{\min }}}}{{{{r^2}_{\max }}}}\]
So we get angular velocity at maximum distance as \[\dfrac{{\omega {{r^2}_{\min }}}}{{{{r^2}_{\max }}}}\].
So, The correct option is D.
Additional information:
An important role is played by Johannes Kepler, the physicist who gave us the three laws of planetary motion. The three laws are:
The law of ellipses:
The path of the planets about the sun is elliptical in shape, with the centre of the sun being located at one focus.
The law of equal areas:
An imaginary line drawn from the centre of the sun to the centre of the planet will sweep out equal areas in equal intervals of time.
The Law of Harmonies:
The ratio of the squares of the periods of any two planets is equal to the ratio of the cubes of their average distances from the sun.
It was his second law, the law of equal areas which was further manipulated to find out that the angular momentum remains conserved during the whole planetary motion of a planet around the Sun.
Note: We know \[L = mvr\] and we can substitute \[v = \omega r\] so that we can make the formula \[L = m\omega {r^2}\]and \[m\] is constant and external torque is absent so we can say that angular momentum is constant and can calculate the angular velocity at any point on that path if we know the distance of that point from sun.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids