
A player strikes a football such that it started spinning in the air with an angular velocity $\omega $ as shown in the diagram. Another player of an opposite team punctures the football through a sharp needle in the air such that the radius of the football contract to $75\% $ of its original value. What will be the new angular velocity of the football if the weight of the football remains the same?

(A) $\dfrac{4}{7}\omega $
(B) $\dfrac{{16}}{9}\omega $
(C) $\dfrac{4}{{25}}\omega $
(D) $\dfrac{{25}}{4}\omega $
Answer
218.7k+ views
Hint: The solution can be determined by equation the torque of the football before puncher with the torque of the football after puncher. The torque is given by the product of the moment of inertia and the angular velocity. By using this equation, the new angular velocity can be determined.
Useful formula
The torque of the football is given by,
$T = I \times \omega $
Where, $T$ is the torque of the ball, $I$ is the moment of inertia and $\omega $ is the angular velocity.
The moment of inertia for spherical ball is,
$I = \dfrac{2}{3}m{R^2}$
Where, $I$ is the moment of inertia, $m$ is the moment of inertia and $R$ is the radius of the sphere.
Complete step by step solution
Given that,
The initial radius is ${R_1}$
The final radius is, ${R_2} = 75\% \times {R_1} \Rightarrow \dfrac{{75}}{{100}}{R_1} \Rightarrow \dfrac{3}{4}{R_1}$
Now,
The torque of the football is given by,
$\Rightarrow T = I \times \omega $
From the above equation, the torque for the football before puncher is given by,
$\Rightarrow T = {I_1} \times {\omega _1}$
The torque for the football after puncher is given by,
$\Rightarrow T = {I_2} \times {\omega _2}$
By equating the two torque equations, then
$\Rightarrow {I_1} \times {\omega _1} = {I_2} \times {\omega _2}$
By substituting the moment of inertia values on both sides, then the above equation is written as,
$\Rightarrow \dfrac{2}{3}m{R_1}^2 \times {\omega _1} = \dfrac{2}{3}m{R_2}^2 \times {\omega _2}$
By cancelling the same terms, then
$\Rightarrow {R_1}^2 \times {\omega _1} = {R_2}^2 \times {\omega _2}$
By keeping the term ${\omega _2}$ in one side, then
$\Rightarrow {\omega _2} = {\left( {\dfrac{{{R_1}}}{{{R_2}}}} \right)^2} \times {\omega _1}$
By substituting the value of ${R_2}$, then
$\Rightarrow {\omega _2} = {\left( {\dfrac{{{R_1}}}{{\dfrac{3}{4}{R_1}}}} \right)^2} \times {\omega _1}$
By cancelling the same terms, then
$\Rightarrow {\omega _2} = {\left( {\dfrac{1}{{\dfrac{3}{4}}}} \right)^2} \times {\omega _1}$
By rearranging the terms, then
$\Rightarrow {\omega _2} = {\left( {\dfrac{4}{3}} \right)^2} \times {\omega _1}$
By squaring the terms, then
$\Rightarrow {\omega _2} = \dfrac{{16}}{9}{\omega _1}$
Hence, the option (B) is the correct answer.
Note: From the final answer, it shows that the angular velocity of the football before puncher is less than the angular velocity of the football after puncher. The angular velocity is increasing that the radius of the object is decreasing. If the radius increases the angular velocity decreases.
Useful formula
The torque of the football is given by,
$T = I \times \omega $
Where, $T$ is the torque of the ball, $I$ is the moment of inertia and $\omega $ is the angular velocity.
The moment of inertia for spherical ball is,
$I = \dfrac{2}{3}m{R^2}$
Where, $I$ is the moment of inertia, $m$ is the moment of inertia and $R$ is the radius of the sphere.
Complete step by step solution
Given that,
The initial radius is ${R_1}$
The final radius is, ${R_2} = 75\% \times {R_1} \Rightarrow \dfrac{{75}}{{100}}{R_1} \Rightarrow \dfrac{3}{4}{R_1}$
Now,
The torque of the football is given by,
$\Rightarrow T = I \times \omega $
From the above equation, the torque for the football before puncher is given by,
$\Rightarrow T = {I_1} \times {\omega _1}$
The torque for the football after puncher is given by,
$\Rightarrow T = {I_2} \times {\omega _2}$
By equating the two torque equations, then
$\Rightarrow {I_1} \times {\omega _1} = {I_2} \times {\omega _2}$
By substituting the moment of inertia values on both sides, then the above equation is written as,
$\Rightarrow \dfrac{2}{3}m{R_1}^2 \times {\omega _1} = \dfrac{2}{3}m{R_2}^2 \times {\omega _2}$
By cancelling the same terms, then
$\Rightarrow {R_1}^2 \times {\omega _1} = {R_2}^2 \times {\omega _2}$
By keeping the term ${\omega _2}$ in one side, then
$\Rightarrow {\omega _2} = {\left( {\dfrac{{{R_1}}}{{{R_2}}}} \right)^2} \times {\omega _1}$
By substituting the value of ${R_2}$, then
$\Rightarrow {\omega _2} = {\left( {\dfrac{{{R_1}}}{{\dfrac{3}{4}{R_1}}}} \right)^2} \times {\omega _1}$
By cancelling the same terms, then
$\Rightarrow {\omega _2} = {\left( {\dfrac{1}{{\dfrac{3}{4}}}} \right)^2} \times {\omega _1}$
By rearranging the terms, then
$\Rightarrow {\omega _2} = {\left( {\dfrac{4}{3}} \right)^2} \times {\omega _1}$
By squaring the terms, then
$\Rightarrow {\omega _2} = \dfrac{{16}}{9}{\omega _1}$
Hence, the option (B) is the correct answer.
Note: From the final answer, it shows that the angular velocity of the football before puncher is less than the angular velocity of the football after puncher. The angular velocity is increasing that the radius of the object is decreasing. If the radius increases the angular velocity decreases.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

