A playground merry-go-round has radius 2.40 m and moment of inertia 2100 \[kg{{m}^{2}}\] about a vertical axle through its center, and it turns with negligible friction. A child applies an 18.0-N force tangentially to the edge of the merry-go-round for 15.0 s. find the work done by the child?
A- 200 J
B- 20 J
C- 100 J
D- 400 J
Answer
Verified
116.1k+ views
Hint: Merry go round always moves in a circular motion, it is fixed. Now the force which is bringing it into circular motion here is the 18 N force acting tangentially and the angle between the force and the radius vector, they are perpendicular to each other. So, this force acts as a torque. We know the relationship between torque, moment of inertia and angular velocity.
Complete Step by step solution:
Force$=18N$
Radius,$r=2.4m$
Moment of inertia, \[I=2100kg{{m}^{2}}\]
Torque,
$\tau =rF \\
\Rightarrow \tau =2.4\times 18 \\
\therefore \tau =43.2Nm \\$
Also, the relationship between torque and moment of inertia and angular acceleration.
$\tau =I\alpha \\
\Rightarrow \alpha =\dfrac{\tau }{I} \\
\Rightarrow \alpha =\dfrac{43.2}{2100} \\
\therefore \alpha =0.021rad{{s}^{-2}} \\$
Now we know the time for which this force acts. For $15s$
$\alpha =\dfrac{\omega }{t} \\
\Rightarrow \omega =\alpha t \\
\Rightarrow \omega =0.021\times 15 \\
\therefore \omega =0.315rad{{s}^{-1}} \\$
Now using work energy theorem change in kinetic energy must be equal to work done. The merry go round starts from rest.
$\Rightarrow W=\Delta K \\
\Rightarrow W={{K}_{f}}-{{K}_{i}} \\
\Rightarrow W={{K}_{f}}-0 \\
\Rightarrow W={{K}_{f}} \\
\Rightarrow W=\dfrac{I{{\omega }^{2}}}{2} \\
\Rightarrow W=\dfrac{2100\times {{0.315}^{2}}}{2} \\
\therefore W=100J \\$
So, the correct option is (c)
Note: While substituting the values all the units must be in the same notation preferably in SI. If the frequency is given in round per minute, always convert it into round per second and if we multiply it by 2 \[\pi \] we get the angular frequency.
Also, torque is a vector quantity and is given by the cross product of force and perpendicular distance from the axis of rotation. In this problem both the vectors were perpendicular to each other, we have to see these all the things.
Complete Step by step solution:
Force$=18N$
Radius,$r=2.4m$
Moment of inertia, \[I=2100kg{{m}^{2}}\]
Torque,
$\tau =rF \\
\Rightarrow \tau =2.4\times 18 \\
\therefore \tau =43.2Nm \\$
Also, the relationship between torque and moment of inertia and angular acceleration.
$\tau =I\alpha \\
\Rightarrow \alpha =\dfrac{\tau }{I} \\
\Rightarrow \alpha =\dfrac{43.2}{2100} \\
\therefore \alpha =0.021rad{{s}^{-2}} \\$
Now we know the time for which this force acts. For $15s$
$\alpha =\dfrac{\omega }{t} \\
\Rightarrow \omega =\alpha t \\
\Rightarrow \omega =0.021\times 15 \\
\therefore \omega =0.315rad{{s}^{-1}} \\$
Now using work energy theorem change in kinetic energy must be equal to work done. The merry go round starts from rest.
$\Rightarrow W=\Delta K \\
\Rightarrow W={{K}_{f}}-{{K}_{i}} \\
\Rightarrow W={{K}_{f}}-0 \\
\Rightarrow W={{K}_{f}} \\
\Rightarrow W=\dfrac{I{{\omega }^{2}}}{2} \\
\Rightarrow W=\dfrac{2100\times {{0.315}^{2}}}{2} \\
\therefore W=100J \\$
So, the correct option is (c)
Note: While substituting the values all the units must be in the same notation preferably in SI. If the frequency is given in round per minute, always convert it into round per second and if we multiply it by 2 \[\pi \] we get the angular frequency.
Also, torque is a vector quantity and is given by the cross product of force and perpendicular distance from the axis of rotation. In this problem both the vectors were perpendicular to each other, we have to see these all the things.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids