Answer
Verified
99.9k+ views
Hint: To solve this question we need to use the relation between the intensity and the power of a source. The power of a point source is uniformly spread over the concentric spheres centered at the point charge.
Complete step-by-step solution:
A point source of a wave spreads the energy uniformly all over the space in all the three dimensions. So this means that the intensity of the wave must be uniform over the surface area of each of the concentric spheres centered at the point source.
Now, according to the question, the point source is of sound which is radiating the energy at the power of $3.14$ watts, that is,
$P = 3.14{\text{W}}$..............(1)
We have to find out the intensity level of the loudness at a distance of $15.8m$ from the point source.
Now, at a distance of $15.8m$ from the point source, we will have a sphere of radius $15.8m$ centred at the point source of sound. We know that the surface area of a sphere is given by
$A = 4\pi {r^2}$
Since the radius of the sphere is equal to $15.8m$, so we substitute $r = 15.8m$ in the above expression to get
$A = 4\pi {\left( {15.8} \right)^2}$...................(2)
Now, we know that the intensity is equal to the power per unit area. So the intensity at the distance of $15.8m$ from the point source of sound becomes
$I = \dfrac{P}{A}$
Substituting (1) and (2) in the above expression, we get
$I = \dfrac{{3.14}}{{4\pi {{\left( {15.8} \right)}^2}}}$
According to the question $\pi = 3.14$. Substituting it above, we get
\[I = \dfrac{{3.14}}{{4 \times 3.14 \times {{\left( {15.8} \right)}^2}}}\]
On solving we get
$I \approx {10^{ - 3}}{\text{W}}/{m^2}$
Now, we know that the intensity in decibels is given by the following equation
$I\left( {dB} \right) = \log \left( {\dfrac{{I\left( {{\text{W}}/{m^2}} \right)}}{{{{10}^{ - 12}}}}} \right)$
$ \Rightarrow I\left( {dB} \right) = \log \left( {\dfrac{{{{10}^{ - 3}}}}{{{{10}^{ - 12}}}}} \right)$
On solving we get
$I\left( {dB} \right) = 9dB$
Thus, the intensity level of loudness at the given distance is equal to $9dB$.
Hence, the correct answer is option A.
Note: The decibel is a unit of the power or intensity which is expressed as the ratio of the power to the root power on a logarithmic scale. The logarithm of the intensity is more nearly approximated to the human perception and is not linearly related. That is why the decibel level is preferred.
Complete step-by-step solution:
A point source of a wave spreads the energy uniformly all over the space in all the three dimensions. So this means that the intensity of the wave must be uniform over the surface area of each of the concentric spheres centered at the point source.
Now, according to the question, the point source is of sound which is radiating the energy at the power of $3.14$ watts, that is,
$P = 3.14{\text{W}}$..............(1)
We have to find out the intensity level of the loudness at a distance of $15.8m$ from the point source.
Now, at a distance of $15.8m$ from the point source, we will have a sphere of radius $15.8m$ centred at the point source of sound. We know that the surface area of a sphere is given by
$A = 4\pi {r^2}$
Since the radius of the sphere is equal to $15.8m$, so we substitute $r = 15.8m$ in the above expression to get
$A = 4\pi {\left( {15.8} \right)^2}$...................(2)
Now, we know that the intensity is equal to the power per unit area. So the intensity at the distance of $15.8m$ from the point source of sound becomes
$I = \dfrac{P}{A}$
Substituting (1) and (2) in the above expression, we get
$I = \dfrac{{3.14}}{{4\pi {{\left( {15.8} \right)}^2}}}$
According to the question $\pi = 3.14$. Substituting it above, we get
\[I = \dfrac{{3.14}}{{4 \times 3.14 \times {{\left( {15.8} \right)}^2}}}\]
On solving we get
$I \approx {10^{ - 3}}{\text{W}}/{m^2}$
Now, we know that the intensity in decibels is given by the following equation
$I\left( {dB} \right) = \log \left( {\dfrac{{I\left( {{\text{W}}/{m^2}} \right)}}{{{{10}^{ - 12}}}}} \right)$
$ \Rightarrow I\left( {dB} \right) = \log \left( {\dfrac{{{{10}^{ - 3}}}}{{{{10}^{ - 12}}}}} \right)$
On solving we get
$I\left( {dB} \right) = 9dB$
Thus, the intensity level of loudness at the given distance is equal to $9dB$.
Hence, the correct answer is option A.
Note: The decibel is a unit of the power or intensity which is expressed as the ratio of the power to the root power on a logarithmic scale. The logarithm of the intensity is more nearly approximated to the human perception and is not linearly related. That is why the decibel level is preferred.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main