A pot maker rotates a pot making wheel of radius $3m$ by applying a force of $200N$ tangentially. If wheel completes exactly $\dfrac{3}{2}$ revolutions, work done by him is:
A) $5654.86J$
B) $4321.32J$
C) \[4197.5J\]
D) $1884.96J$
Answer
Verified
116.4k+ views
Hint: While calculating work done in a rotational motion, we need to consider all the angular equivalents of linear parameters. Maximum angular calculations are done in radians not in degrees.
Complete step by step answer:
In rotational motion the angular equivalents of linear parameters are,
$
S \to \theta \\
v \to \omega \\
a \to \alpha \\
F \to \tau $
So, To find work done, we need to find torque$\left( \tau \right)$ first,
$\Rightarrow \tau = r \times F$
$\Rightarrow \tau = 3 \times 200$
$\Rightarrow \tau = 600Nm$
Now to calculate work done by the man,
$\Rightarrow W = \int {\tau d\theta } $
Since torque is constant,
$\Rightarrow W = \tau \Delta \theta $
In this case total angular displacement$\left( \theta \right)$,
$\Rightarrow \Delta \theta = \dfrac{3}{2} \times 2\pi $
$\Rightarrow \Delta \theta = 3\pi $
So, $W = 600 \times 3\pi $
$\Rightarrow W = 1800\pi J$
$\Rightarrow W = 5654.86J$
Therefore, the correct answer is option A.
Note: Work done can also be calculated by work-energy theorem in a rotational motion. It says that work done during a rotational motion is equal to change in kinetic energy. In vector form the dot product of torque vector and radial vector is known as work done.
Complete step by step answer:
In rotational motion the angular equivalents of linear parameters are,
$
S \to \theta \\
v \to \omega \\
a \to \alpha \\
F \to \tau $
So, To find work done, we need to find torque$\left( \tau \right)$ first,
$\Rightarrow \tau = r \times F$
$\Rightarrow \tau = 3 \times 200$
$\Rightarrow \tau = 600Nm$
Now to calculate work done by the man,
$\Rightarrow W = \int {\tau d\theta } $
Since torque is constant,
$\Rightarrow W = \tau \Delta \theta $
In this case total angular displacement$\left( \theta \right)$,
$\Rightarrow \Delta \theta = \dfrac{3}{2} \times 2\pi $
$\Rightarrow \Delta \theta = 3\pi $
So, $W = 600 \times 3\pi $
$\Rightarrow W = 1800\pi J$
$\Rightarrow W = 5654.86J$
Therefore, the correct answer is option A.
Note: Work done can also be calculated by work-energy theorem in a rotational motion. It says that work done during a rotational motion is equal to change in kinetic energy. In vector form the dot product of torque vector and radial vector is known as work done.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids