Answer
Verified
110.4k+ views
Hint:- The above problem can be solved using the formula that is derived from the kinetic energy of the proton, that is with the respect to the mass of the proton, acceleration of the proton due to the potential difference of a voltage and the charge of the proton.
Useful formula:
The Kinetic Energy of the accelerated proton is given;
$K.E. = qV$
Where, $q$ denotes the charge on the proton, $v$ denotes the voltage acts on the accelerated proton.
Complete step by step solution:
The data given in the problem are;
Mass of the proton, $m = 1.67 \times {10^{ - 27}}$.
Charge of the proton, $q = 1.6 \times {10^{ - 19}}\,\,C$.
Potential difference of voltage, \[V = {10^6}\,\,V\]
The Kinetic Energy of the accelerated proton is given;
$K.E. = qV$
Substitute the values of charge of the proton and the potential difference in the above Kinetic energy formula;
$K.E. = 1.6 \times {10^{ - 19}}\,\,C\, \times {10^6}\,\,V$
On equating the above equation, we get;
$K.E. = 1.6 \times {10^{ - 13}}\,\,J$
Therefore, the kinetic energy of the mass of a proton that is accelerated is given as $K.E. = 1.6 \times {10^{ - 13}}\,\,J$.
Hence the option (D), $K.E. = 1.6 \times {10^{ - 13}}\,\,J$ is the correct answer.
Note: In the above given problem in case proton, if the mass of the proton increases due the addition of two or more protons, then the potential differences to move the proton increases and thus the acceleration acting on the proton increases.
Useful formula:
The Kinetic Energy of the accelerated proton is given;
$K.E. = qV$
Where, $q$ denotes the charge on the proton, $v$ denotes the voltage acts on the accelerated proton.
Complete step by step solution:
The data given in the problem are;
Mass of the proton, $m = 1.67 \times {10^{ - 27}}$.
Charge of the proton, $q = 1.6 \times {10^{ - 19}}\,\,C$.
Potential difference of voltage, \[V = {10^6}\,\,V\]
The Kinetic Energy of the accelerated proton is given;
$K.E. = qV$
Substitute the values of charge of the proton and the potential difference in the above Kinetic energy formula;
$K.E. = 1.6 \times {10^{ - 19}}\,\,C\, \times {10^6}\,\,V$
On equating the above equation, we get;
$K.E. = 1.6 \times {10^{ - 13}}\,\,J$
Therefore, the kinetic energy of the mass of a proton that is accelerated is given as $K.E. = 1.6 \times {10^{ - 13}}\,\,J$.
Hence the option (D), $K.E. = 1.6 \times {10^{ - 13}}\,\,J$ is the correct answer.
Note: In the above given problem in case proton, if the mass of the proton increases due the addition of two or more protons, then the potential differences to move the proton increases and thus the acceleration acting on the proton increases.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main