
A proton has a mass $1.67 \times {10^{ - 27}}\,\,Kg$ and charges $+1.6 \times {10^{ - 19}}\,\,C$. If the proton is being accelerated through a potential difference of one million volts then its K.E. is:
A) $1.6 \times {10^{ - 25}}\,\,J$
B) $3.2 \times {10^{ - 13}}\,\,J$
C) $1.6 \times {10^{ - 15}}\,\,J$
D) $1.6 \times {10^{ - 13}}\,\,J$
Answer
225k+ views
Hint:- The above problem can be solved using the formula that is derived from the kinetic energy of the proton, that is with the respect to the mass of the proton, acceleration of the proton due to the potential difference of a voltage and the charge of the proton.
Useful formula:
The Kinetic Energy of the accelerated proton is given;
$K.E. = qV$
Where, $q$ denotes the charge on the proton, $v$ denotes the voltage acts on the accelerated proton.
Complete step by step solution:
The data given in the problem are;
Mass of the proton, $m = 1.67 \times {10^{ - 27}}$.
Charge of the proton, $q = 1.6 \times {10^{ - 19}}\,\,C$.
Potential difference of voltage, \[V = {10^6}\,\,V\]
The Kinetic Energy of the accelerated proton is given;
$K.E. = qV$
Substitute the values of charge of the proton and the potential difference in the above Kinetic energy formula;
$K.E. = 1.6 \times {10^{ - 19}}\,\,C\, \times {10^6}\,\,V$
On equating the above equation, we get;
$K.E. = 1.6 \times {10^{ - 13}}\,\,J$
Therefore, the kinetic energy of the mass of a proton that is accelerated is given as $K.E. = 1.6 \times {10^{ - 13}}\,\,J$.
Hence the option (D), $K.E. = 1.6 \times {10^{ - 13}}\,\,J$ is the correct answer.
Note: In the above given problem in case proton, if the mass of the proton increases due the addition of two or more protons, then the potential differences to move the proton increases and thus the acceleration acting on the proton increases.
Useful formula:
The Kinetic Energy of the accelerated proton is given;
$K.E. = qV$
Where, $q$ denotes the charge on the proton, $v$ denotes the voltage acts on the accelerated proton.
Complete step by step solution:
The data given in the problem are;
Mass of the proton, $m = 1.67 \times {10^{ - 27}}$.
Charge of the proton, $q = 1.6 \times {10^{ - 19}}\,\,C$.
Potential difference of voltage, \[V = {10^6}\,\,V\]
The Kinetic Energy of the accelerated proton is given;
$K.E. = qV$
Substitute the values of charge of the proton and the potential difference in the above Kinetic energy formula;
$K.E. = 1.6 \times {10^{ - 19}}\,\,C\, \times {10^6}\,\,V$
On equating the above equation, we get;
$K.E. = 1.6 \times {10^{ - 13}}\,\,J$
Therefore, the kinetic energy of the mass of a proton that is accelerated is given as $K.E. = 1.6 \times {10^{ - 13}}\,\,J$.
Hence the option (D), $K.E. = 1.6 \times {10^{ - 13}}\,\,J$ is the correct answer.
Note: In the above given problem in case proton, if the mass of the proton increases due the addition of two or more protons, then the potential differences to move the proton increases and thus the acceleration acting on the proton increases.
Recently Updated Pages
JEE Main 2025-26 Experimental Skills Mock Test – Free Practice

JEE Main 2025-26: Magnetic Effects of Current & Magnetism Mock Test

JEE Main 2025-26 Atoms and Nuclei Mock Test – Free Practice Online

JEE Main Mock Test 2025-26: Optics Chapter Practice Online

The work done in slowly moving an electron of charge class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: City Intimation Slip and Exam Dates Released, Application Form Closed, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Hybridisation in Chemistry – Concept, Types & Applications

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Atomic Structure for Beginners

Understanding Electromagnetic Waves and Their Importance

