
A radar sends radio waves of frequency $\nu $ towards an aeroplane moving with velocity ${v_a}$. A change $\Delta \nu $ is observed in the frequency of reflected waves which is higher than original frequency. The velocity of aeroplane is:
$\left( {{v_a} < < c} \right)$
(A) \[\dfrac{{c\Delta v}}{v}\]
(B) $\dfrac{{2c\Delta v}}{v}$
(C) \[\dfrac{{c\Delta v}}{{2v}}\]
(D) $\dfrac{{\Delta v}}{{2cv}}$
Answer
134.1k+ views
Hint: To solve this question, we need to use the Doppler Effect formula for the apparent frequency as received by a receiver. We have to substitute the speeds with the proper sign convention for the two cases. On solving the two equations formed, we will get the required speed of the aeroplane.
Formula used: The formula used to solve this question is given by
\[\nu ' = \left( {\dfrac{{v - {v_L}}}{{v - {v_S}}}} \right){\nu _0}\], here $\nu '$ is the apparent frequency as received by a receiver moving with a speed of ${v_L}$ due to a source of sound moving with a speed of ${v_S}$ and emitting a sound of frequency ${\nu _0}$. The velocity of the wave is $v$.
Complete step-by-step solution:
In the given question, the direction of the velocity of the aeroplane is not given to us. Therefore we assume that it is moving away from the radar.
From the Doppler’s Effect formula, we know that the apparent frequency received by an observer is given by
\[\nu ' = \left( {\dfrac{{v - {v_L}}}{{v - {v_S}}}} \right){\nu _0}\]
According to the question, the radio wave has a frequency of $\nu $. Also we know that radio waves are a type of electromagnetic wave which has a speed of $c$. Therefore substituting $v = c$, and ${\nu _0} = \nu $ in the above equation, we get
\[\nu ' = \left( {\dfrac{{c - {v_L}}}{{c - {v_S}}}} \right)\nu \]................(1)
In the first case, the radar is the source and the aeroplane is the receiver. Since the radar is stationary, so we have${v_S} = 0$. Also, since the aeroplane is moving with a speed of ${v_a}$ parallel to the signal, we have \[{v_L} = {v_a}\]. Substituting these in (1), we get the frequency received by the aeroplane as
\[\nu ' = \left( {\dfrac{{c - {v_a}}}{{c - 0}}} \right)\nu \]
$ \Rightarrow \nu ' = \left( {\dfrac{{c - {v_a}}}{c}} \right)\nu $ …………………..(2)
Now, this frequency will be reflected by the aeroplane. So this time the aeroplane becomes the source and the radar becomes the receiver. Now, the source is moving opposite to the signal with a speed of ${v_a}$, so we have \[{v_S} = - {v_a}\]. Also, the receiver, the radar is stationary. So we have ${v_L} = 0$. Substituting these in (1) we get the frequency of the reflected radio wave received by the radar as
$\nu '' = \left( {\dfrac{{c - 0}}{{c + {v_a}}}} \right)\nu '$
$ \Rightarrow \nu '' = \left( {\dfrac{c}{{c + {v_a}}}} \right)\nu '$
Putting (2) in the above, we get
$\nu '' = \left( {\dfrac{c}{{c + {v_a}}}} \right)\left( {\dfrac{{c - {v_a}}}{c}} \right)\nu $
$ \Rightarrow \nu '' = \left( {\dfrac{{c - {v_a}}}{{c + {v_a}}}} \right)\nu $
According to the question, the frequency of the reflected wave is greater than the original frequency, so $\nu '' > \nu $. But from the above equation, we have $\nu '' < \nu $. This means that our assumption of the direction of velocity of the aeroplane is incorrect. So the aeroplane must be moving towards the radar. So we replace \[{v_a}\] by $ - {v_a}$ in the above equation to get
$\nu '' = \left( {\dfrac{{c + {v_a}}}{{c - {v_a}}}} \right)\nu $
Now, we have
$\Delta \nu = \nu '' - \nu $
$ \Rightarrow \Delta \nu = \left( {\dfrac{{c + {v_a}}}{{c - {v_a}}}} \right)\nu - \nu $
Dividing by $\nu $ both the sides, we get
$\dfrac{{\Delta \nu }}{\nu } = \left( {\dfrac{{c + {v_a}}}{{c - {v_a}}}} \right) - 1$
$ \Rightarrow \dfrac{{\Delta \nu }}{\nu } = \dfrac{{2{v_a}}}{{c - {v_a}}}$
According to the question, $\left( {{v_a} < < c} \right)$. So we approximate $c - {v_a} \approx c$ in the above equation to get
$\dfrac{{\Delta \nu }}{\nu } = \dfrac{{2{v_a}}}{c}$
\[ \Rightarrow {v_a} = \dfrac{{c\Delta \nu }}{{2\nu }}\]
Thus, the velocity of the aeroplane is equal to $\dfrac{{c\Delta \nu }}{{2\nu }}$.
Hence, the correct answer is option C.
Note: The direction of velocity is from the source to the receiver. According to the sign convention, all the speeds which are parallel to the direction from the source to the receiver are taken to be positive and those in the opposite direction are taken to be negative. Do not apply the concept of relative velocity while substituting the speeds of the source and the receiver.
Formula used: The formula used to solve this question is given by
\[\nu ' = \left( {\dfrac{{v - {v_L}}}{{v - {v_S}}}} \right){\nu _0}\], here $\nu '$ is the apparent frequency as received by a receiver moving with a speed of ${v_L}$ due to a source of sound moving with a speed of ${v_S}$ and emitting a sound of frequency ${\nu _0}$. The velocity of the wave is $v$.
Complete step-by-step solution:
In the given question, the direction of the velocity of the aeroplane is not given to us. Therefore we assume that it is moving away from the radar.
From the Doppler’s Effect formula, we know that the apparent frequency received by an observer is given by
\[\nu ' = \left( {\dfrac{{v - {v_L}}}{{v - {v_S}}}} \right){\nu _0}\]
According to the question, the radio wave has a frequency of $\nu $. Also we know that radio waves are a type of electromagnetic wave which has a speed of $c$. Therefore substituting $v = c$, and ${\nu _0} = \nu $ in the above equation, we get
\[\nu ' = \left( {\dfrac{{c - {v_L}}}{{c - {v_S}}}} \right)\nu \]................(1)
In the first case, the radar is the source and the aeroplane is the receiver. Since the radar is stationary, so we have${v_S} = 0$. Also, since the aeroplane is moving with a speed of ${v_a}$ parallel to the signal, we have \[{v_L} = {v_a}\]. Substituting these in (1), we get the frequency received by the aeroplane as
\[\nu ' = \left( {\dfrac{{c - {v_a}}}{{c - 0}}} \right)\nu \]
$ \Rightarrow \nu ' = \left( {\dfrac{{c - {v_a}}}{c}} \right)\nu $ …………………..(2)
Now, this frequency will be reflected by the aeroplane. So this time the aeroplane becomes the source and the radar becomes the receiver. Now, the source is moving opposite to the signal with a speed of ${v_a}$, so we have \[{v_S} = - {v_a}\]. Also, the receiver, the radar is stationary. So we have ${v_L} = 0$. Substituting these in (1) we get the frequency of the reflected radio wave received by the radar as
$\nu '' = \left( {\dfrac{{c - 0}}{{c + {v_a}}}} \right)\nu '$
$ \Rightarrow \nu '' = \left( {\dfrac{c}{{c + {v_a}}}} \right)\nu '$
Putting (2) in the above, we get
$\nu '' = \left( {\dfrac{c}{{c + {v_a}}}} \right)\left( {\dfrac{{c - {v_a}}}{c}} \right)\nu $
$ \Rightarrow \nu '' = \left( {\dfrac{{c - {v_a}}}{{c + {v_a}}}} \right)\nu $
According to the question, the frequency of the reflected wave is greater than the original frequency, so $\nu '' > \nu $. But from the above equation, we have $\nu '' < \nu $. This means that our assumption of the direction of velocity of the aeroplane is incorrect. So the aeroplane must be moving towards the radar. So we replace \[{v_a}\] by $ - {v_a}$ in the above equation to get
$\nu '' = \left( {\dfrac{{c + {v_a}}}{{c - {v_a}}}} \right)\nu $
Now, we have
$\Delta \nu = \nu '' - \nu $
$ \Rightarrow \Delta \nu = \left( {\dfrac{{c + {v_a}}}{{c - {v_a}}}} \right)\nu - \nu $
Dividing by $\nu $ both the sides, we get
$\dfrac{{\Delta \nu }}{\nu } = \left( {\dfrac{{c + {v_a}}}{{c - {v_a}}}} \right) - 1$
$ \Rightarrow \dfrac{{\Delta \nu }}{\nu } = \dfrac{{2{v_a}}}{{c - {v_a}}}$
According to the question, $\left( {{v_a} < < c} \right)$. So we approximate $c - {v_a} \approx c$ in the above equation to get
$\dfrac{{\Delta \nu }}{\nu } = \dfrac{{2{v_a}}}{c}$
\[ \Rightarrow {v_a} = \dfrac{{c\Delta \nu }}{{2\nu }}\]
Thus, the velocity of the aeroplane is equal to $\dfrac{{c\Delta \nu }}{{2\nu }}$.
Hence, the correct answer is option C.
Note: The direction of velocity is from the source to the receiver. According to the sign convention, all the speeds which are parallel to the direction from the source to the receiver are taken to be positive and those in the opposite direction are taken to be negative. Do not apply the concept of relative velocity while substituting the speeds of the source and the receiver.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Class 11 JEE Main Physics Mock Test 2025

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion In A Plane: Line Class 11 Notes: CBSE Physics Chapter 3
