A radioactive nuclide X decays into nuclei Y and Z by simultaneous disintegration as shown. Effective decay constant for the disintegration is
(A) ${\lambda _1} + {\lambda _2}$
(B) $\dfrac{{{\lambda _1}{\lambda _2}}}{{{\lambda _1} + {\lambda _2}}}$
(C) $\dfrac{{{\lambda _1} + {\lambda _2}}}{2}$
(D) $\dfrac{{2{\lambda _1}{\lambda _2}}}{{{\lambda _1} + {\lambda _2}}}$
Answer
Verified
122.7k+ views
Hint: To solve this question, we need to use the general equation for the rate of nuclear disintegration. We have to apply the equation separately for the two decays of the given nucleus, and combine them to get the effective decay constant.
Complete step-by-step solution:
We know that the rate of the radioactive decay of a nucleus is proportional to the number of nuclei. And the constant of this proportionality is the decay constant. So the expression for the rate of the radioactive decay of a nucleus is written as
$ - \dfrac{{dN}}{{dt}} = \lambda N$
Now, according to the given nuclide X is being decayed into the two daughter nuclei Y and Z. And the decay constants for these two decays are given to be ${\lambda _1}$ and ${\lambda _2}$ respectively.
So we can separately write the equation for the rate of decay for these two decays. Writing the equation for the decay of X to Y, we get
$ - \dfrac{{d{N_X}}}{{dt}} = {\lambda _1}{N_X}$
Every decayed nucleus of X produces a nucleus Y. So we can write
$\dfrac{{d{N_Y}}}{{dt}} = {\lambda _1}{N_X}$...................(1)
Similarly for the decay of X to Z, we can write
$\dfrac{{d{N_Z}}}{{dt}} = {\lambda _2}{N_X}$.....................(2)
Adding (1) and (2) we have
$\dfrac{{d{N_Y}}}{{dt}} + \dfrac{{d{N_Z}}}{{dt}} = {\lambda _1}{N_X} + {\lambda _2}{N_X}$
$ \Rightarrow \dfrac{{d\left( {{N_Y} + {N_Z}} \right)}}{{dt}} = \left( {{\lambda _1} + {\lambda _2}} \right){N_X}$ (3)
Now, since Y and Z nuclei are produced from the nucleus X, so we can write
\[\dfrac{{d\left( {{N_Y} + {N_Z}} \right)}}{{dt}} = - \dfrac{{d{N_X}}}{{dt}}\]
Substituting this above, we get
$ - \dfrac{{d{N_X}}}{{dt}} = \left( {{\lambda _1} + {\lambda _2}} \right){N_X}$
Comparing with the general decay rate equation $ - \dfrac{{dN}}{{dt}} = \lambda N$, we get the effective decay constant for the given disintegration as
$\lambda = {\lambda _1} + {\lambda _2}$
Thus, the effective decay constant for the disintegration of the nucleus X into the nuclei Y and Z is equal to ${\lambda _1} + {\lambda _2}$.
Hence, the correct answer is option A.
Note: The phenomenon of radioactivity is used on a large scale to generate electric power. Also, it is used in the diagnosis and treatment of diseases in the field of nuclear medicine. The diseases which can be treated by radioactivity are thyroid, cancers etc.
Complete step-by-step solution:
We know that the rate of the radioactive decay of a nucleus is proportional to the number of nuclei. And the constant of this proportionality is the decay constant. So the expression for the rate of the radioactive decay of a nucleus is written as
$ - \dfrac{{dN}}{{dt}} = \lambda N$
Now, according to the given nuclide X is being decayed into the two daughter nuclei Y and Z. And the decay constants for these two decays are given to be ${\lambda _1}$ and ${\lambda _2}$ respectively.
So we can separately write the equation for the rate of decay for these two decays. Writing the equation for the decay of X to Y, we get
$ - \dfrac{{d{N_X}}}{{dt}} = {\lambda _1}{N_X}$
Every decayed nucleus of X produces a nucleus Y. So we can write
$\dfrac{{d{N_Y}}}{{dt}} = {\lambda _1}{N_X}$...................(1)
Similarly for the decay of X to Z, we can write
$\dfrac{{d{N_Z}}}{{dt}} = {\lambda _2}{N_X}$.....................(2)
Adding (1) and (2) we have
$\dfrac{{d{N_Y}}}{{dt}} + \dfrac{{d{N_Z}}}{{dt}} = {\lambda _1}{N_X} + {\lambda _2}{N_X}$
$ \Rightarrow \dfrac{{d\left( {{N_Y} + {N_Z}} \right)}}{{dt}} = \left( {{\lambda _1} + {\lambda _2}} \right){N_X}$ (3)
Now, since Y and Z nuclei are produced from the nucleus X, so we can write
\[\dfrac{{d\left( {{N_Y} + {N_Z}} \right)}}{{dt}} = - \dfrac{{d{N_X}}}{{dt}}\]
Substituting this above, we get
$ - \dfrac{{d{N_X}}}{{dt}} = \left( {{\lambda _1} + {\lambda _2}} \right){N_X}$
Comparing with the general decay rate equation $ - \dfrac{{dN}}{{dt}} = \lambda N$, we get the effective decay constant for the given disintegration as
$\lambda = {\lambda _1} + {\lambda _2}$
Thus, the effective decay constant for the disintegration of the nucleus X into the nuclei Y and Z is equal to ${\lambda _1} + {\lambda _2}$.
Hence, the correct answer is option A.
Note: The phenomenon of radioactivity is used on a large scale to generate electric power. Also, it is used in the diagnosis and treatment of diseases in the field of nuclear medicine. The diseases which can be treated by radioactivity are thyroid, cancers etc.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Chemistry Exam Pattern 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
Electric field due to uniformly charged sphere class 12 physics JEE_Main