
A rifle with a muzzle velocity $1500ft{s^{ - 1}}$ shoots a bullet at a small target 150ft away. How high above the target must the gun be aimed so that the bullet hits the target?
(A) $2.02inch$
(B) $1.72inch$
(C) $1.82inch$
(D) $1.92inch$
Answer
232.8k+ views
Hint: Always watch the sign convention when using Newton’s equations of motion. The acceleration is equal to acceleration due to gravity.
Formula Used: The formulae used in the solution are given here.
$S = ut + \dfrac{1}{2}a{t^2}$ where $S$ is the distance, $u$ is the initial velocity, $t$ is the time taken and $a$ is the acceleration, where $a = g$, acceleration due to gravity.
Complete Step by Step Solution: It has been given that, a rifle with a muzzle velocity $1500ft{s^{ - 1}}$ shoots a bullet at a small target 150ft away.
Muzzle velocity is the speed of a projectile (bullet, pellet, slug, ball/shots or shell) with respect to the muzzle at the moment it leaves the end of a gun's barrel (i.e. the muzzle). So, this is a case of projectile motion.
According to Newton’s law of motion, we have, $S = ut + \dfrac{1}{2}a{t^2}$ where $S$ is the distance, $u$ is the initial velocity, $t$ is the time taken and $a$ is the acceleration, where $a = g$, acceleration due to gravity.
The time taken to reach target by bullet = $t = \dfrac{{distance}}{{speed}} = \dfrac{{150}}{{1500}} = 0.1s$
Since we have motion in both the x-direction and the y-direction, write Newton’s equation in the y-direction since we are interested in how long the object is in the air. Use subscripts to help:
${S_{\left( y \right)}} = ut + \dfrac{1}{2}{a_y}{t^2}$.
Here, ${a_y} = g$. Thus, displacement along vertical (y) direction is given by,
${S_{\left( y \right)}} = 0 + \dfrac{1}{2} \times 9.8 \times {0.1^2}$ since
${S_{\left( y \right)}} = 0.049cm = 1.92inch$.
Hence the correct answer is Option D.
Note: It is assumed that the air resistance is negligible. Thus the result is only applicable when air resistance is zero. It is given that the air resistance is negligible, so the air resistance is left out from the equation.
Formula Used: The formulae used in the solution are given here.
$S = ut + \dfrac{1}{2}a{t^2}$ where $S$ is the distance, $u$ is the initial velocity, $t$ is the time taken and $a$ is the acceleration, where $a = g$, acceleration due to gravity.
Complete Step by Step Solution: It has been given that, a rifle with a muzzle velocity $1500ft{s^{ - 1}}$ shoots a bullet at a small target 150ft away.
Muzzle velocity is the speed of a projectile (bullet, pellet, slug, ball/shots or shell) with respect to the muzzle at the moment it leaves the end of a gun's barrel (i.e. the muzzle). So, this is a case of projectile motion.
According to Newton’s law of motion, we have, $S = ut + \dfrac{1}{2}a{t^2}$ where $S$ is the distance, $u$ is the initial velocity, $t$ is the time taken and $a$ is the acceleration, where $a = g$, acceleration due to gravity.
The time taken to reach target by bullet = $t = \dfrac{{distance}}{{speed}} = \dfrac{{150}}{{1500}} = 0.1s$
Since we have motion in both the x-direction and the y-direction, write Newton’s equation in the y-direction since we are interested in how long the object is in the air. Use subscripts to help:
${S_{\left( y \right)}} = ut + \dfrac{1}{2}{a_y}{t^2}$.
Here, ${a_y} = g$. Thus, displacement along vertical (y) direction is given by,
${S_{\left( y \right)}} = 0 + \dfrac{1}{2} \times 9.8 \times {0.1^2}$ since
${S_{\left( y \right)}} = 0.049cm = 1.92inch$.
Hence the correct answer is Option D.
Note: It is assumed that the air resistance is negligible. Thus the result is only applicable when air resistance is zero. It is given that the air resistance is negligible, so the air resistance is left out from the equation.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

