Answer
Verified
112.8k+ views
Hint: We have the angular velocity in $\dfrac{{rev}}{s}$ which can be converted by multiplying it by $2\pi $. Now we can use the other rotational kinematic formulas to determine the other values.
Formulas used: We will be using the formula $I = m{R^2}$ where $I$ is the moment of inertia , $m$ is the mass of the body, $R$ is the radius of the wheel, and $K = \dfrac{1}{2}m{V^2} + \dfrac{1}{2}I{\omega ^2}$ where $K$ is the kinetic energy of the body in rotation, $V$ is the linear velocity of the body and $\omega $ is the angular velocity of the body.
We will also be using the formula $L = I\omega $ where $L$ is the angular momentum experienced by the body.
Also, we might use the formula to find the torque of a body in rotational motion, $\tau = I\alpha $ where $\tau $ is the torque experienced by the body, $\alpha $ is the angular acceleration experienced by the rotating body.
Complete Step by Step answer:
A rotating body experiences and stands true for every law in kinematics except that the variables are angular instead of linear. This means that the angular velocity can be $\omega \times 2\pi \dfrac{{rad}}{s}$ which gives us the units in terms of rotational kinematics.
Here, we know that the angular velocity $\omega = \dfrac{5}{{11}}rev/s$, so, $\omega = 2\pi \times \dfrac{5}{{11}}$ .
We know that $\pi = \dfrac{{22}}{7}$,
$ \Rightarrow \omega = 2 \times \dfrac{{22}}{7} \times \dfrac{5}{{11}}$. Thus, the value of $\omega $ in $\dfrac{{rad}}{s}$ is $\omega = \dfrac{{20}}{7}rad/\operatorname{s} $ .
Now the first statement requires us to find the moment of inertia of the system given in the problem with $d = 2m$ and $m = 100kg$. We know that the moment of inertia is given by, $I = m{R^2}$ .
Substituting the formulas, we get,
$ \Rightarrow I = 100 \times {\left( 1 \right)^2}$ [since $d = 2m$ , $r = 1m$ ]
So, the moment of inertia of the body in rotational motion is, $I = 100kg{m^2}$ .
The second statement requires to find the kinetic energy of the flywheel, which is given by the formula $K = \dfrac{1}{2}m{V^2} + \dfrac{1}{2}I{\omega ^2}$ .
We know that $I = m{R^2}$ and $V = R\omega $, substituting these values in the equation for kinetic energy we get,
$K = \dfrac{1}{2}m{R^2}{\omega ^2} + \dfrac{1}{2}m{R^2}{\omega ^2} = m{R^2}{\omega ^2}$. Now substituting the values of $m$, $R$, and $\omega $ we get,
$K = (100){(1)^2}{(\dfrac{{20}}{7})^2}$ . $ \Rightarrow K = 816.33J$
Thus, the kinetic energy of the rotational system is $K = 816.33J$. (false)
The next statement requires us to find the angular momentum of the system, which will be given by $L = I\omega $ .Substituting the values of $I$ and $\omega $ we get,
$L = 100 \times \dfrac{{20}}{7} = \dfrac{{2000}}{7}$
$ \Rightarrow L = 285.71Js$ (false)
The last statement requires us to find the time it will take to bring the rotating body to rest if there is a torque of $\tau = 250Nm$ acting on the body. We know that the torque is given by, $\tau = I\alpha $ .
Substituting the values of $\tau $ and $\alpha $ .
$250 = 100 \times \alpha $$ \Rightarrow \alpha = 2.5rad/{s^2}$ .
We also know from the laws of rotational kinematics that $\omega + {\omega _0} = \alpha t$ . Assuming the body to start from rest, and substituting the values, ${\omega _0} = 0,\omega = \dfrac{{20}}{7}rad/s$ and $\alpha = 2.5rad/{s^2}$
$\dfrac{{20}}{7} = 2.5 \times t$
Solving for $t$ we get, $t = 1.142s$. (false)
Thus, the only option that holds true will be option A.
Note: We can see that every law of linear kinematics holds true in rotational motion, except that the variables used are different. Just that during rotational motion the mass is often substituted by moment of inertia. Velocity by angular velocity and so on.
Formulas used: We will be using the formula $I = m{R^2}$ where $I$ is the moment of inertia , $m$ is the mass of the body, $R$ is the radius of the wheel, and $K = \dfrac{1}{2}m{V^2} + \dfrac{1}{2}I{\omega ^2}$ where $K$ is the kinetic energy of the body in rotation, $V$ is the linear velocity of the body and $\omega $ is the angular velocity of the body.
We will also be using the formula $L = I\omega $ where $L$ is the angular momentum experienced by the body.
Also, we might use the formula to find the torque of a body in rotational motion, $\tau = I\alpha $ where $\tau $ is the torque experienced by the body, $\alpha $ is the angular acceleration experienced by the rotating body.
Complete Step by Step answer:
A rotating body experiences and stands true for every law in kinematics except that the variables are angular instead of linear. This means that the angular velocity can be $\omega \times 2\pi \dfrac{{rad}}{s}$ which gives us the units in terms of rotational kinematics.
Here, we know that the angular velocity $\omega = \dfrac{5}{{11}}rev/s$, so, $\omega = 2\pi \times \dfrac{5}{{11}}$ .
We know that $\pi = \dfrac{{22}}{7}$,
$ \Rightarrow \omega = 2 \times \dfrac{{22}}{7} \times \dfrac{5}{{11}}$. Thus, the value of $\omega $ in $\dfrac{{rad}}{s}$ is $\omega = \dfrac{{20}}{7}rad/\operatorname{s} $ .
Now the first statement requires us to find the moment of inertia of the system given in the problem with $d = 2m$ and $m = 100kg$. We know that the moment of inertia is given by, $I = m{R^2}$ .
Substituting the formulas, we get,
$ \Rightarrow I = 100 \times {\left( 1 \right)^2}$ [since $d = 2m$ , $r = 1m$ ]
So, the moment of inertia of the body in rotational motion is, $I = 100kg{m^2}$ .
The second statement requires to find the kinetic energy of the flywheel, which is given by the formula $K = \dfrac{1}{2}m{V^2} + \dfrac{1}{2}I{\omega ^2}$ .
We know that $I = m{R^2}$ and $V = R\omega $, substituting these values in the equation for kinetic energy we get,
$K = \dfrac{1}{2}m{R^2}{\omega ^2} + \dfrac{1}{2}m{R^2}{\omega ^2} = m{R^2}{\omega ^2}$. Now substituting the values of $m$, $R$, and $\omega $ we get,
$K = (100){(1)^2}{(\dfrac{{20}}{7})^2}$ . $ \Rightarrow K = 816.33J$
Thus, the kinetic energy of the rotational system is $K = 816.33J$. (false)
The next statement requires us to find the angular momentum of the system, which will be given by $L = I\omega $ .Substituting the values of $I$ and $\omega $ we get,
$L = 100 \times \dfrac{{20}}{7} = \dfrac{{2000}}{7}$
$ \Rightarrow L = 285.71Js$ (false)
The last statement requires us to find the time it will take to bring the rotating body to rest if there is a torque of $\tau = 250Nm$ acting on the body. We know that the torque is given by, $\tau = I\alpha $ .
Substituting the values of $\tau $ and $\alpha $ .
$250 = 100 \times \alpha $$ \Rightarrow \alpha = 2.5rad/{s^2}$ .
We also know from the laws of rotational kinematics that $\omega + {\omega _0} = \alpha t$ . Assuming the body to start from rest, and substituting the values, ${\omega _0} = 0,\omega = \dfrac{{20}}{7}rad/s$ and $\alpha = 2.5rad/{s^2}$
$\dfrac{{20}}{7} = 2.5 \times t$
Solving for $t$ we get, $t = 1.142s$. (false)
Thus, the only option that holds true will be option A.
Note: We can see that every law of linear kinematics holds true in rotational motion, except that the variables used are different. Just that during rotational motion the mass is often substituted by moment of inertia. Velocity by angular velocity and so on.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Class 11 JEE Main Physics Mock Test 2025
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 5 Work Energy and Power
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line