Answer
Verified
112.8k+ views
Hint: This question is directly formula based. Since, in the question, radius of curvature is given, so here in this case we need to use the formula of velocity profile directly. After that we can directly get the solution for the given question.
Complete step by step solution:
As, in the given question, width of the road is given, $L = 10cm$
Radius or curvature, $R = 50cm$
The distance between the above and lower edge of the road, $h = 1.5m$
If a body is moving on the road, then a force will be acting on the body and a downward force due to its weight will also act on the body. There will be components of the force which will act on the body which is moving on the with a velocity on the road, which is given as,
$N\sin \theta = \dfrac{{m{v^2}}}{R}$………………(i)
And $N\cos \theta = mg$…………………(ii)
Now, when we divide equation (i) by (ii), we get,
$\tan \theta = \dfrac{{{v^2}}}{{gR}}$
Now, for most suited velocity, we can use the formula for velocity profile,
$v = \sqrt {gR\tan \theta } $………………(iii)
Also, we know that $\tan \theta = \dfrac{h}{L}$
Now, we need to put the values in equation (iii)
So, we will get, $v = \sqrt {10 \times 50 \times \dfrac{{1.5}}{{10}}} $
$ \Rightarrow v = \sqrt {50 \times 1.5} $
$ \Rightarrow v = \sqrt {75} $
$\therefore v = 8.5m{s^{ - 1}}$
Hence, option (D), i.e. $8.5m{s^{ - 1}}$ is the correct answer for the given question.
Note: Here, in this question, the angle of inclination is not given. But the width of the road and the distance between the upper edge and the lower edge is given, so we used the relation$\tan \theta = \dfrac{h}{L}$. If the angle would be given then directly we can use the value of$\tan \theta $. Now, the equation of velocity is given by$v = \sqrt {gR\tan \theta } $.
Complete step by step solution:
As, in the given question, width of the road is given, $L = 10cm$
Radius or curvature, $R = 50cm$
The distance between the above and lower edge of the road, $h = 1.5m$
If a body is moving on the road, then a force will be acting on the body and a downward force due to its weight will also act on the body. There will be components of the force which will act on the body which is moving on the with a velocity on the road, which is given as,
$N\sin \theta = \dfrac{{m{v^2}}}{R}$………………(i)
And $N\cos \theta = mg$…………………(ii)
Now, when we divide equation (i) by (ii), we get,
$\tan \theta = \dfrac{{{v^2}}}{{gR}}$
Now, for most suited velocity, we can use the formula for velocity profile,
$v = \sqrt {gR\tan \theta } $………………(iii)
Also, we know that $\tan \theta = \dfrac{h}{L}$
Now, we need to put the values in equation (iii)
So, we will get, $v = \sqrt {10 \times 50 \times \dfrac{{1.5}}{{10}}} $
$ \Rightarrow v = \sqrt {50 \times 1.5} $
$ \Rightarrow v = \sqrt {75} $
$\therefore v = 8.5m{s^{ - 1}}$
Hence, option (D), i.e. $8.5m{s^{ - 1}}$ is the correct answer for the given question.
Note: Here, in this question, the angle of inclination is not given. But the width of the road and the distance between the upper edge and the lower edge is given, so we used the relation$\tan \theta = \dfrac{h}{L}$. If the angle would be given then directly we can use the value of$\tan \theta $. Now, the equation of velocity is given by$v = \sqrt {gR\tan \theta } $.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Class 11 JEE Main Physics Mock Test 2025
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 5 Work Energy and Power
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line